fix random_crop_and_resize

This commit is contained in:
panfengfeng 2020-06-18 21:56:05 +08:00
parent 91c856e5ee
commit 25827a8619
10 changed files with 141 additions and 32 deletions

View File

@ -65,7 +65,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
else:
trans = [
C.Decode(),
C.Resize((256, 256)),
C.Resize(256),
C.CenterCrop(image_size),
C.Normalize(mean=mean, std=std),
C.HWC2CHW()

View File

@ -57,7 +57,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
else:
transform_img = [
V_C.Decode(),
V_C.Resize((256, 256)),
V_C.Resize(256),
V_C.CenterCrop(image_size),
V_C.Normalize(mean=mean, std=std),
V_C.HWC2CHW()

View File

@ -35,8 +35,10 @@ RandomCropAndResizeOp::RandomCropAndResizeOp(int32_t target_height, int32_t targ
: target_height_(target_height),
target_width_(target_width),
rnd_scale_(scale_lb, scale_ub),
rnd_aspect_(aspect_lb, aspect_ub),
rnd_aspect_(log(aspect_lb), log(aspect_ub)),
interpolation_(interpolation),
aspect_lb_(aspect_lb),
aspect_ub_(aspect_ub),
max_iter_(max_iter) {
rnd_.seed(GetSeed());
}
@ -63,34 +65,44 @@ Status RandomCropAndResizeOp::OutputShape(const std::vector<TensorShape> &inputs
if (!outputs.empty()) return Status::OK();
return Status(StatusCode::kUnexpectedError, "Input has a wrong shape");
}
Status RandomCropAndResizeOp::GetCropBox(int h_in, int w_in, int *x, int *y, int *crop_height, int *crop_width) {
double scale, aspect;
*crop_width = w_in;
*crop_height = h_in;
bool crop_success = false;
CHECK_FAIL_RETURN_UNEXPECTED(w_in != 0, "Width is 0");
CHECK_FAIL_RETURN_UNEXPECTED(h_in != 0, "Height is 0");
CHECK_FAIL_RETURN_UNEXPECTED(aspect_lb_ > 0, "Aspect lower bound must be greater than zero");
for (int32_t i = 0; i < max_iter_; i++) {
scale = rnd_scale_(rnd_);
aspect = rnd_aspect_(rnd_);
*crop_width = static_cast<int32_t>(std::round(std::sqrt(h_in * w_in * scale / aspect)));
*crop_height = static_cast<int32_t>(std::round(*crop_width * aspect));
double const sample_scale = rnd_scale_(rnd_);
// In case of non-symmetrical aspect ratios, use uniform distribution on a logarithmic sample_scale.
// Note rnd_aspect_ is already a random distribution of the input aspect ratio in logarithmic sample_scale.
double const sample_aspect = exp(rnd_aspect_(rnd_));
*crop_width = static_cast<int32_t>(std::round(std::sqrt(h_in * w_in * sample_scale * sample_aspect)));
*crop_height = static_cast<int32_t>(std::round(*crop_width / sample_aspect));
if (*crop_width <= w_in && *crop_height <= h_in) {
crop_success = true;
break;
std::uniform_int_distribution<> rd_x(0, w_in - *crop_width);
std::uniform_int_distribution<> rd_y(0, h_in - *crop_height);
*x = rd_x(rnd_);
*y = rd_y(rnd_);
return Status::OK();
}
}
if (!crop_success) {
CHECK_FAIL_RETURN_UNEXPECTED(w_in != 0, "Width is 0");
aspect = static_cast<double>(h_in) / w_in;
scale = rnd_scale_(rnd_);
*crop_width = static_cast<int32_t>(std::round(std::sqrt(h_in * w_in * scale / aspect)));
*crop_height = static_cast<int32_t>(std::round(*crop_width * aspect));
*crop_height = (*crop_height > h_in) ? h_in : *crop_height;
*crop_width = (*crop_width > w_in) ? w_in : *crop_width;
double const img_aspect = static_cast<double>(w_in) / h_in;
if (img_aspect < aspect_lb_) {
*crop_width = w_in;
*crop_height = static_cast<int32_t>(std::round(*crop_width / static_cast<double>(aspect_lb_)));
} else {
if (img_aspect > aspect_ub_) {
*crop_height = h_in;
*crop_width = static_cast<int32_t>(std::round(*crop_height * static_cast<double>(aspect_ub_)));
} else {
*crop_width = w_in;
*crop_height = h_in;
}
}
std::uniform_int_distribution<> rd_x(0, w_in - *crop_width);
std::uniform_int_distribution<> rd_y(0, h_in - *crop_height);
*x = rd_x(rnd_);
*y = rd_y(rnd_);
*x = static_cast<int32_t>(std::round((w_in - *crop_width) / 2.0));
*y = static_cast<int32_t>(std::round((h_in - *crop_height) / 2.0));
return Status::OK();
}
} // namespace dataset

View File

@ -60,6 +60,8 @@ class RandomCropAndResizeOp : public TensorOp {
std::mt19937 rnd_;
InterpolationMode interpolation_;
int32_t max_iter_;
double aspect_lb_;
double aspect_ub_;
};
} // namespace dataset
} // namespace mindspore

View File

@ -28,17 +28,16 @@ class MindDataTestRandomCropAndResizeOp : public UT::CVOP::CVOpCommon {
public:
MindDataTestRandomCropAndResizeOp() : CVOpCommon() {}
};
TEST_F(MindDataTestRandomCropAndResizeOp, TestOpSimpleTest) {
TEST_F(MindDataTestRandomCropAndResizeOp, TestOpSimpleTest1) {
MS_LOG(INFO) << " starting RandomCropAndResizeOp simple test";
TensorShape s_in = input_tensor_->shape();
std::shared_ptr<Tensor> output_tensor;
int h_out = 1024;
int w_out = 2048;
float aspect_lb = 0.2;
float aspect_ub = 5;
float scale_lb = 0.0001;
float scale_ub = 1.0;
float aspect_lb = 2;
float aspect_ub = 2.5;
float scale_lb = 0.2;
float scale_ub = 2.0;
TensorShape s_out({h_out, w_out, s_in[2]});
@ -51,3 +50,47 @@ TEST_F(MindDataTestRandomCropAndResizeOp, TestOpSimpleTest) {
MS_LOG(INFO) << "RandomCropAndResizeOp simple test finished";
}
TEST_F(MindDataTestRandomCropAndResizeOp, TestOpSimpleTest2) {
MS_LOG(INFO) << " starting RandomCropAndResizeOp simple test";
TensorShape s_in = input_tensor_->shape();
std::shared_ptr<Tensor> output_tensor;
int h_out = 1024;
int w_out = 2048;
float aspect_lb = 1;
float aspect_ub = 1.5;
float scale_lb = 0.2;
float scale_ub = 2.0;
TensorShape s_out({h_out, w_out, s_in[2]});
auto op = std::make_unique<RandomCropAndResizeOp>(h_out, w_out, scale_lb, scale_ub, aspect_lb, aspect_ub);
Status s;
for (auto i = 0; i < 100; i++) {
s = op->Compute(input_tensor_, &output_tensor);
EXPECT_TRUE(s.IsOk());
}
MS_LOG(INFO) << "RandomCropAndResizeOp simple test finished";
}
TEST_F(MindDataTestRandomCropAndResizeOp, TestOpSimpleTest3) {
MS_LOG(INFO) << " starting RandomCropAndResizeOp simple test";
TensorShape s_in = input_tensor_->shape();
std::shared_ptr<Tensor> output_tensor;
int h_out = 1024;
int w_out = 2048;
float aspect_lb = 0.2;
float aspect_ub = 3;
float scale_lb = 0.2;
float scale_ub = 2.0;
TensorShape s_out({h_out, w_out, s_in[2]});
auto op = std::make_unique<RandomCropAndResizeOp>(h_out, w_out, scale_lb, scale_ub, aspect_lb, aspect_ub);
Status s;
for (auto i = 0; i < 100; i++) {
s = op->Compute(input_tensor_, &output_tensor);
EXPECT_TRUE(s.IsOk());
}
MS_LOG(INFO) << "RandomCropAndResizeOp simple test finished";
}

View File

@ -39,7 +39,8 @@ def test_random_crop_and_resize_op(plot=False):
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (1, 1), (0.5, 0.5))
# With these inputs we expect the code to crop the whole image
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (2, 2), (1, 3))
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
@ -63,6 +64,49 @@ def test_random_crop_and_resize_op(plot=False):
if plot:
visualize(original_images, crop_and_resize_images)
def test_random_crop_and_resize_op_py(plot=False):
"""
Test RandomCropAndResize op in py transforms
"""
logger.info("test_random_crop_and_resize_op_py")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# With these inputs we expect the code to crop the whole image
transforms1 = [
py_vision.Decode(),
py_vision.RandomResizedCrop((256, 512), (2, 2), (1, 3)),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
# Second dataset for comparison
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
data2 = data2.map(input_columns=["image"], operations=transform2())
num_iter = 0
crop_and_resize_images = []
original_images = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
crop_and_resize = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = cv2.resize(original, (512, 256))
mse = diff_mse(crop_and_resize, original)
# Due to rounding error the mse for Python is not exactly 0
assert mse <= 0.05
logger.info("random_crop_and_resize_op_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1
crop_and_resize_images.append(crop_and_resize)
original_images.append(original)
if plot:
visualize(original_images, crop_and_resize_images)
def test_random_crop_and_resize_01():
"""
Test RandomCropAndResize with md5 check, expected to pass
@ -74,7 +118,7 @@ def test_random_crop_and_resize_01():
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (0.5, 1), (0.5, 1))
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (0.5, 0.5), (1, 1))
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_and_resize_op)
@ -82,7 +126,7 @@ def test_random_crop_and_resize_01():
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomResizedCrop((256, 512), (0.5, 1), (0.5, 1)),
py_vision.RandomResizedCrop((256, 512), (0.5, 0.5), (1, 1)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
@ -93,6 +137,7 @@ def test_random_crop_and_resize_01():
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_02():
"""
Test RandomCropAndResize with md5 check:Image interpolation mode is Inter.NEAREST,
@ -124,6 +169,7 @@ def test_random_crop_and_resize_02():
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_03():
"""
Test RandomCropAndResize with md5 check: max_attempts is 1, expected to pass
@ -154,6 +200,7 @@ def test_random_crop_and_resize_03():
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_random_crop_and_resize_04_c():
"""
Test RandomCropAndResize with c_tranforms: invalid range of scale (max<min),
@ -179,6 +226,7 @@ def test_random_crop_and_resize_04_c():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_04_py():
"""
Test RandomCropAndResize with py_transforms: invalid range of scale (max<min),
@ -207,6 +255,7 @@ def test_random_crop_and_resize_04_py():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_05_c():
"""
Test RandomCropAndResize with c_transforms: invalid range of ratio (max<min),
@ -232,6 +281,7 @@ def test_random_crop_and_resize_05_c():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_05_py():
"""
Test RandomCropAndResize with py_transforms: invalid range of ratio (max<min),
@ -260,6 +310,7 @@ def test_random_crop_and_resize_05_py():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input range is not valid" in str(e)
def test_random_crop_and_resize_comp(plot=False):
"""
Test RandomCropAndResize and compare between python and c image augmentation
@ -293,6 +344,7 @@ def test_random_crop_and_resize_comp(plot=False):
if plot:
visualize(image_c_cropped, image_py_cropped)
if __name__ == "__main__":
test_random_crop_and_resize_op(True)
test_random_crop_and_resize_01()