forked from mindspore-Ecosystem/mindspore
!37346 [MS][DOC] fix bug of doc
Merge pull request !37346 from mengyuanli/code_docs_bug_fix
This commit is contained in:
commit
1c08d29bb6
|
@ -13,7 +13,7 @@ mindspore.ops.interpolate
|
|||
|
||||
**参数:**
|
||||
|
||||
- **x** (Tensor) - 输入,3到5维的Tensor。
|
||||
- **x** (Tensor) - 输入,3维或者4维的Tensor。
|
||||
- **roi** (tuple[float], 可选) - 在 `crop_and_resize` 坐标变换模式下生效,当前不支持。
|
||||
- **scales** (tuple[float], 可选) - 输入shape每个维度resize的系数。 `scales` 的长度跟 `x` 的shape长度相同。 `scales` 和 `size` 同时只能指定一个。
|
||||
- **sizes** (tuple[int], 可选) - 输入shape指定轴的新维度。 `scales` 和 `size` 同时只能指定一个。当 `mode` 是"linear"时, `size` 为1个int元素 :math:`(new\_width,)` 的tuple。当 `mode` 是"bilinear"时, `size` 为2个int元素 :math:`(new\_height, new\_width)` 的tuple。
|
||||
|
|
|
@ -2379,6 +2379,7 @@ def tensor_scatter_elements(input_x, indices, updates, axis=0, reduction="none")
|
|||
value according to the indices.
|
||||
|
||||
For a 3-D tensor, the output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
output[indices[i][j][k]][j][k] = updates[i][j][k] # if axis == 0, reduction == "none"
|
||||
|
@ -2406,7 +2407,7 @@ def tensor_scatter_elements(input_x, indices, updates, axis=0, reduction="none")
|
|||
axis (int): Which axis to scatter, default is 0. Accepted range is [-r, r) where r = rank(input_x).
|
||||
reduction (string): Which reduction operation to scatter, default is "none". Other option: "add".
|
||||
|
||||
Outputs:
|
||||
Returns:
|
||||
Tensor, has the same shape and type as `input_x`.
|
||||
|
||||
Raises:
|
||||
|
|
|
@ -619,7 +619,7 @@ def interpolate(x, roi=None, scales=None, sizes=None, coordinate_transformation_
|
|||
when mode is "bilinear".
|
||||
|
||||
Args:
|
||||
x (Tensor): a 3-D, 4-D or 5-D tensor which to resize.
|
||||
x (Tensor): a 3-D or 4-D tensor which to resize.
|
||||
roi (tuple[float], optional): a tuple of float. Only takes effect when attr coordinate_transformation_mode is
|
||||
'crop_and_resize'.
|
||||
scales (tuple[float], optional): a tuple of float. Describe the scale along each dimension. Its length is the
|
||||
|
|
Loading…
Reference in New Issue