forked from mindspore-Ecosystem/mindspore
!1622 change mobilenet file struct.
Merge pull request !1622 from SanjayChan/r0.3
This commit is contained in:
commit
01d9ce3e5d
|
@ -13,7 +13,7 @@ The overall network architecture of MobileNetV2 is show below:
|
||||||
|
|
||||||
# Dataset
|
# Dataset
|
||||||
|
|
||||||
Dataset used: [imagenet](http://www.image-net.org/)
|
Dataset used: imagenet
|
||||||
|
|
||||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||||
- Train: 120G, 1.2W images
|
- Train: 120G, 1.2W images
|
||||||
|
@ -60,8 +60,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
||||||
|
|
||||||
### Usage
|
### Usage
|
||||||
|
|
||||||
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]
|
||||||
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]
|
||||||
|
|
||||||
### Launch
|
### Launch
|
||||||
|
|
|
@ -42,6 +42,7 @@ run_ascend()
|
||||||
--server_id=$3 \
|
--server_id=$3 \
|
||||||
--training_script=${BASEPATH}/../train.py \
|
--training_script=${BASEPATH}/../train.py \
|
||||||
--dataset_path=$5 \
|
--dataset_path=$5 \
|
||||||
|
--pre_trained=$6 \
|
||||||
--platform=$1 &> ../train.log & # dataset train folder
|
--platform=$1 &> ../train.log & # dataset train folder
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -73,14 +74,15 @@ run_gpu()
|
||||||
python ${BASEPATH}/../train.py \
|
python ${BASEPATH}/../train.py \
|
||||||
--dataset_path=$4 \
|
--dataset_path=$4 \
|
||||||
--platform=$1 \
|
--platform=$1 \
|
||||||
|
--pre_trained=$5 \
|
||||||
&> ../train.log & # dataset train folder
|
&> ../train.log & # dataset train folder
|
||||||
}
|
}
|
||||||
|
|
||||||
if [ $# -gt 5 ] || [ $# -lt 4 ]
|
if [ $# -gt 6 ] || [ $# -lt 4 ]
|
||||||
then
|
then
|
||||||
echo "Usage:\n \
|
echo "Usage:\n \
|
||||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||||
"
|
"
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
|
@ -33,11 +33,11 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||||
from mindspore.communication.management import init, get_group_size
|
from mindspore.communication.management import init, get_group_size
|
||||||
|
from mindspore.model_zoo.mobilenetV2 import mobilenet_v2
|
||||||
import mindspore.dataset.engine as de
|
import mindspore.dataset.engine as de
|
||||||
from src.dataset import create_dataset
|
from src.dataset import create_dataset
|
||||||
from src.lr_generator import get_lr
|
from src.lr_generator import get_lr
|
||||||
from src.config import config_gpu, config_ascend
|
from src.config import config_gpu, config_ascend
|
||||||
from src.mobilenetV2 import mobilenet_v2
|
|
||||||
|
|
||||||
random.seed(1)
|
random.seed(1)
|
||||||
np.random.seed(1)
|
np.random.seed(1)
|
|
@ -13,7 +13,7 @@ The overall network architecture of MobileNetV3 is show below:
|
||||||
|
|
||||||
# Dataset
|
# Dataset
|
||||||
|
|
||||||
Dataset used: [imagenet](http://www.image-net.org/)
|
Dataset used: imagenet
|
||||||
|
|
||||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||||
- Train: 120G, 1.2W images
|
- Train: 120G, 1.2W images
|
||||||
|
@ -67,8 +67,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
||||||
|
|
||||||
```
|
```
|
||||||
# training example
|
# training example
|
||||||
Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/
|
Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/ mobilenet_199.ckpt
|
||||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
|
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ mobilenet_199.ckpt
|
||||||
```
|
```
|
||||||
|
|
||||||
### Result
|
### Result
|
|
@ -41,6 +41,7 @@ run_ascend()
|
||||||
--server_id=$3 \
|
--server_id=$3 \
|
||||||
--training_script=${BASEPATH}/../train.py \
|
--training_script=${BASEPATH}/../train.py \
|
||||||
--dataset_path=$5 \
|
--dataset_path=$5 \
|
||||||
|
--pre_trained=$6 \
|
||||||
--platform=$1 &> ../train.log & # dataset train folder
|
--platform=$1 &> ../train.log & # dataset train folder
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -72,14 +73,15 @@ run_gpu()
|
||||||
python ${BASEPATH}/../train.py \
|
python ${BASEPATH}/../train.py \
|
||||||
--dataset_path=$4 \
|
--dataset_path=$4 \
|
||||||
--platform=$1 \
|
--platform=$1 \
|
||||||
|
--pre_trained=$5 \
|
||||||
&> ../train.log & # dataset train folder
|
&> ../train.log & # dataset train folder
|
||||||
}
|
}
|
||||||
|
|
||||||
if [ $# -gt 5 ] || [ $# -lt 4 ]
|
if [ $# -gt 6 ] || [ $# -lt 4 ]
|
||||||
then
|
then
|
||||||
echo "Usage:\n \
|
echo "Usage:\n \
|
||||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||||
"
|
"
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
|
@ -34,10 +34,10 @@ from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||||
import mindspore.dataset.engine as de
|
import mindspore.dataset.engine as de
|
||||||
from mindspore.communication.management import init, get_group_size
|
from mindspore.communication.management import init, get_group_size
|
||||||
|
from mindspore.model_zoo.mobilenetV3 import mobilenet_v3_large
|
||||||
from src.dataset import create_dataset
|
from src.dataset import create_dataset
|
||||||
from src.lr_generator import get_lr
|
from src.lr_generator import get_lr
|
||||||
from src.config import config_gpu, config_ascend
|
from src.config import config_gpu, config_ascend
|
||||||
from src.mobilenetV3 import mobilenet_v3_large
|
|
||||||
|
|
||||||
random.seed(1)
|
random.seed(1)
|
||||||
np.random.seed(1)
|
np.random.seed(1)
|
|
@ -1,285 +0,0 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""MobileNetV2 model define"""
|
|
||||||
import numpy as np
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.ops import operations as P
|
|
||||||
from mindspore.ops.operations import TensorAdd
|
|
||||||
from mindspore import Parameter, Tensor
|
|
||||||
from mindspore.common.initializer import initializer
|
|
||||||
|
|
||||||
__all__ = ['MobileNetV2', 'mobilenet_v2']
|
|
||||||
|
|
||||||
|
|
||||||
def _make_divisible(v, divisor, min_value=None):
|
|
||||||
"""
|
|
||||||
This function is taken from the original tf repo.
|
|
||||||
It ensures that all layers have a channel number that is divisible by 8
|
|
||||||
It can be seen here:
|
|
||||||
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
|
||||||
:param v:
|
|
||||||
:param divisor:
|
|
||||||
:param min_value:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
if min_value is None:
|
|
||||||
min_value = divisor
|
|
||||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
||||||
# Make sure that round down does not go down by more than 10%.
|
|
||||||
if new_v < 0.9 * v:
|
|
||||||
new_v += divisor
|
|
||||||
return new_v
|
|
||||||
|
|
||||||
|
|
||||||
class GlobalAvgPooling(nn.Cell):
|
|
||||||
"""
|
|
||||||
Global avg pooling definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> GlobalAvgPooling()
|
|
||||||
"""
|
|
||||||
def __init__(self):
|
|
||||||
super(GlobalAvgPooling, self).__init__()
|
|
||||||
self.mean = P.ReduceMean(keep_dims=False)
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.mean(x, (2, 3))
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class DepthwiseConv(nn.Cell):
|
|
||||||
"""
|
|
||||||
Depthwise Convolution warpper definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
in_planes (int): Input channel.
|
|
||||||
kernel_size (int): Input kernel size.
|
|
||||||
stride (int): Stride size.
|
|
||||||
pad_mode (str): pad mode in (pad, same, valid)
|
|
||||||
channel_multiplier (int): Output channel multiplier
|
|
||||||
has_bias (bool): has bias or not
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
|
|
||||||
"""
|
|
||||||
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
|
|
||||||
super(DepthwiseConv, self).__init__()
|
|
||||||
self.has_bias = has_bias
|
|
||||||
self.in_channels = in_planes
|
|
||||||
self.channel_multiplier = channel_multiplier
|
|
||||||
self.out_channels = in_planes * channel_multiplier
|
|
||||||
self.kernel_size = (kernel_size, kernel_size)
|
|
||||||
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier,
|
|
||||||
kernel_size=self.kernel_size,
|
|
||||||
stride=stride, pad_mode=pad_mode, pad=pad)
|
|
||||||
self.bias_add = P.BiasAdd()
|
|
||||||
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
|
|
||||||
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
|
||||||
|
|
||||||
if has_bias:
|
|
||||||
bias_shape = [channel_multiplier * in_planes]
|
|
||||||
self.bias = Parameter(initializer('zeros', bias_shape), name='bias')
|
|
||||||
else:
|
|
||||||
self.bias = None
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
output = self.depthwise_conv(x, self.weight)
|
|
||||||
if self.has_bias:
|
|
||||||
output = self.bias_add(output, self.bias)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNReLU(nn.Cell):
|
|
||||||
"""
|
|
||||||
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
in_planes (int): Input channel.
|
|
||||||
out_planes (int): Output channel.
|
|
||||||
kernel_size (int): Input kernel size.
|
|
||||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
||||||
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
|
|
||||||
"""
|
|
||||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
|
||||||
super(ConvBNReLU, self).__init__()
|
|
||||||
padding = (kernel_size - 1) // 2
|
|
||||||
if groups == 1:
|
|
||||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
|
|
||||||
padding=padding)
|
|
||||||
else:
|
|
||||||
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
|
|
||||||
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
|
|
||||||
self.features = nn.SequentialCell(layers)
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
output = self.features(x)
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class InvertedResidual(nn.Cell):
|
|
||||||
"""
|
|
||||||
Mobilenetv2 residual block definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
inp (int): Input channel.
|
|
||||||
oup (int): Output channel.
|
|
||||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
||||||
expand_ratio (int): expand ration of input channel
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> ResidualBlock(3, 256, 1, 1)
|
|
||||||
"""
|
|
||||||
def __init__(self, inp, oup, stride, expand_ratio):
|
|
||||||
super(InvertedResidual, self).__init__()
|
|
||||||
assert stride in [1, 2]
|
|
||||||
|
|
||||||
hidden_dim = int(round(inp * expand_ratio))
|
|
||||||
self.use_res_connect = stride == 1 and inp == oup
|
|
||||||
|
|
||||||
layers = []
|
|
||||||
if expand_ratio != 1:
|
|
||||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
|
||||||
layers.extend([
|
|
||||||
# dw
|
|
||||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
|
||||||
# pw-linear
|
|
||||||
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
|
|
||||||
nn.BatchNorm2d(oup),
|
|
||||||
])
|
|
||||||
self.conv = nn.SequentialCell(layers)
|
|
||||||
self.add = TensorAdd()
|
|
||||||
self.cast = P.Cast()
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
identity = x
|
|
||||||
x = self.conv(x)
|
|
||||||
if self.use_res_connect:
|
|
||||||
return self.add(identity, x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class MobileNetV2(nn.Cell):
|
|
||||||
"""
|
|
||||||
MobileNetV2 architecture.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
class_num (Cell): number of classes.
|
|
||||||
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
|
|
||||||
has_dropout (bool): Is dropout used. Default is false
|
|
||||||
inverted_residual_setting (list): Inverted residual settings. Default is None
|
|
||||||
round_nearest (list): Channel round to . Default is 8
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> MobileNetV2(num_classes=1000)
|
|
||||||
"""
|
|
||||||
def __init__(self, num_classes=1000, width_mult=1.,
|
|
||||||
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
|
|
||||||
super(MobileNetV2, self).__init__()
|
|
||||||
block = InvertedResidual
|
|
||||||
input_channel = 32
|
|
||||||
last_channel = 1280
|
|
||||||
# setting of inverted residual blocks
|
|
||||||
self.cfgs = inverted_residual_setting
|
|
||||||
if inverted_residual_setting is None:
|
|
||||||
self.cfgs = [
|
|
||||||
# t, c, n, s
|
|
||||||
[1, 16, 1, 1],
|
|
||||||
[6, 24, 2, 2],
|
|
||||||
[6, 32, 3, 2],
|
|
||||||
[6, 64, 4, 2],
|
|
||||||
[6, 96, 3, 1],
|
|
||||||
[6, 160, 3, 2],
|
|
||||||
[6, 320, 1, 1],
|
|
||||||
]
|
|
||||||
|
|
||||||
# building first layer
|
|
||||||
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
|
||||||
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
|
||||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
|
||||||
# building inverted residual blocks
|
|
||||||
for t, c, n, s in self.cfgs:
|
|
||||||
output_channel = _make_divisible(c * width_mult, round_nearest)
|
|
||||||
for i in range(n):
|
|
||||||
stride = s if i == 0 else 1
|
|
||||||
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
|
||||||
input_channel = output_channel
|
|
||||||
# building last several layers
|
|
||||||
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
|
|
||||||
# make it nn.CellList
|
|
||||||
self.features = nn.SequentialCell(features)
|
|
||||||
# mobilenet head
|
|
||||||
head = ([GlobalAvgPooling(), nn.Dense(self.out_channels, num_classes, has_bias=True)] if not has_dropout else
|
|
||||||
[GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(self.out_channels, num_classes, has_bias=True)])
|
|
||||||
self.head = nn.SequentialCell(head)
|
|
||||||
|
|
||||||
self._initialize_weights()
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.features(x)
|
|
||||||
x = self.head(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def _initialize_weights(self):
|
|
||||||
"""
|
|
||||||
Initialize weights.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> _initialize_weights()
|
|
||||||
"""
|
|
||||||
for _, m in self.cells_and_names():
|
|
||||||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
|
||||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
||||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
|
||||||
m.weight.data.shape()).astype("float32")))
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
||||||
elif isinstance(m, nn.BatchNorm2d):
|
|
||||||
m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
|
||||||
m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
|
||||||
elif isinstance(m, nn.Dense):
|
|
||||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32")))
|
|
||||||
if m.bias is not None:
|
|
||||||
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
|
||||||
|
|
||||||
|
|
||||||
def mobilenet_v2(**kwargs):
|
|
||||||
"""
|
|
||||||
Constructs a MobileNet V2 model
|
|
||||||
"""
|
|
||||||
return MobileNetV2(**kwargs)
|
|
Loading…
Reference in New Issue