forked from mindspore-Ecosystem/mindspore
!1622 change mobilenet file struct.
Merge pull request !1622 from SanjayChan/r0.3
This commit is contained in:
commit
01d9ce3e5d
|
@ -13,7 +13,7 @@ The overall network architecture of MobileNetV2 is show below:
|
|||
|
||||
# Dataset
|
||||
|
||||
Dataset used: [imagenet](http://www.image-net.org/)
|
||||
Dataset used: imagenet
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
|
@ -60,8 +60,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
|
||||
### Usage
|
||||
|
||||
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
||||
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
||||
- Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]
|
||||
- GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]
|
||||
|
||||
### Launch
|
||||
|
|
@ -42,6 +42,7 @@ run_ascend()
|
|||
--server_id=$3 \
|
||||
--training_script=${BASEPATH}/../train.py \
|
||||
--dataset_path=$5 \
|
||||
--pre_trained=$6 \
|
||||
--platform=$1 &> ../train.log & # dataset train folder
|
||||
}
|
||||
|
||||
|
@ -73,14 +74,15 @@ run_gpu()
|
|||
python ${BASEPATH}/../train.py \
|
||||
--dataset_path=$4 \
|
||||
--platform=$1 \
|
||||
--pre_trained=$5 \
|
||||
&> ../train.log & # dataset train folder
|
||||
}
|
||||
|
||||
if [ $# -gt 5 ] || [ $# -lt 4 ]
|
||||
if [ $# -gt 6 ] || [ $# -lt 4 ]
|
||||
then
|
||||
echo "Usage:\n \
|
||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||
"
|
||||
exit 1
|
||||
fi
|
|
@ -33,11 +33,11 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
|||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init, get_group_size
|
||||
from mindspore.model_zoo.mobilenetV2 import mobilenet_v2
|
||||
import mindspore.dataset.engine as de
|
||||
from src.dataset import create_dataset
|
||||
from src.lr_generator import get_lr
|
||||
from src.config import config_gpu, config_ascend
|
||||
from src.mobilenetV2 import mobilenet_v2
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
|
@ -13,7 +13,7 @@ The overall network architecture of MobileNetV3 is show below:
|
|||
|
||||
# Dataset
|
||||
|
||||
Dataset used: [imagenet](http://www.image-net.org/)
|
||||
Dataset used: imagenet
|
||||
|
||||
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
||||
- Train: 120G, 1.2W images
|
||||
|
@ -67,8 +67,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
|
||||
```
|
||||
# training example
|
||||
Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
|
||||
Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/ mobilenet_199.ckpt
|
||||
GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ mobilenet_199.ckpt
|
||||
```
|
||||
|
||||
### Result
|
|
@ -41,6 +41,7 @@ run_ascend()
|
|||
--server_id=$3 \
|
||||
--training_script=${BASEPATH}/../train.py \
|
||||
--dataset_path=$5 \
|
||||
--pre_trained=$6 \
|
||||
--platform=$1 &> ../train.log & # dataset train folder
|
||||
}
|
||||
|
||||
|
@ -72,14 +73,15 @@ run_gpu()
|
|||
python ${BASEPATH}/../train.py \
|
||||
--dataset_path=$4 \
|
||||
--platform=$1 \
|
||||
--pre_trained=$5 \
|
||||
&> ../train.log & # dataset train folder
|
||||
}
|
||||
|
||||
if [ $# -gt 5 ] || [ $# -lt 4 ]
|
||||
if [ $# -gt 6 ] || [ $# -lt 4 ]
|
||||
then
|
||||
echo "Usage:\n \
|
||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
|
||||
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]\n \
|
||||
"
|
||||
exit 1
|
||||
fi
|
|
@ -34,10 +34,10 @@ from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore.communication.management import init, get_group_size
|
||||
from mindspore.model_zoo.mobilenetV3 import mobilenet_v3_large
|
||||
from src.dataset import create_dataset
|
||||
from src.lr_generator import get_lr
|
||||
from src.config import config_gpu, config_ascend
|
||||
from src.mobilenetV3 import mobilenet_v3_large
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
|
@ -1,285 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""MobileNetV2 model define"""
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import TensorAdd
|
||||
from mindspore import Parameter, Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
|
||||
__all__ = ['MobileNetV2', 'mobilenet_v2']
|
||||
|
||||
|
||||
def _make_divisible(v, divisor, min_value=None):
|
||||
"""
|
||||
This function is taken from the original tf repo.
|
||||
It ensures that all layers have a channel number that is divisible by 8
|
||||
It can be seen here:
|
||||
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||||
:param v:
|
||||
:param divisor:
|
||||
:param min_value:
|
||||
:return:
|
||||
"""
|
||||
if min_value is None:
|
||||
min_value = divisor
|
||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||||
# Make sure that round down does not go down by more than 10%.
|
||||
if new_v < 0.9 * v:
|
||||
new_v += divisor
|
||||
return new_v
|
||||
|
||||
|
||||
class GlobalAvgPooling(nn.Cell):
|
||||
"""
|
||||
Global avg pooling definition.
|
||||
|
||||
Args:
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> GlobalAvgPooling()
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GlobalAvgPooling, self).__init__()
|
||||
self.mean = P.ReduceMean(keep_dims=False)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.mean(x, (2, 3))
|
||||
return x
|
||||
|
||||
|
||||
class DepthwiseConv(nn.Cell):
|
||||
"""
|
||||
Depthwise Convolution warpper definition.
|
||||
|
||||
Args:
|
||||
in_planes (int): Input channel.
|
||||
kernel_size (int): Input kernel size.
|
||||
stride (int): Stride size.
|
||||
pad_mode (str): pad mode in (pad, same, valid)
|
||||
channel_multiplier (int): Output channel multiplier
|
||||
has_bias (bool): has bias or not
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
|
||||
"""
|
||||
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
|
||||
super(DepthwiseConv, self).__init__()
|
||||
self.has_bias = has_bias
|
||||
self.in_channels = in_planes
|
||||
self.channel_multiplier = channel_multiplier
|
||||
self.out_channels = in_planes * channel_multiplier
|
||||
self.kernel_size = (kernel_size, kernel_size)
|
||||
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier,
|
||||
kernel_size=self.kernel_size,
|
||||
stride=stride, pad_mode=pad_mode, pad=pad)
|
||||
self.bias_add = P.BiasAdd()
|
||||
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
|
||||
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
||||
|
||||
if has_bias:
|
||||
bias_shape = [channel_multiplier * in_planes]
|
||||
self.bias = Parameter(initializer('zeros', bias_shape), name='bias')
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def construct(self, x):
|
||||
output = self.depthwise_conv(x, self.weight)
|
||||
if self.has_bias:
|
||||
output = self.bias_add(output, self.bias)
|
||||
return output
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Cell):
|
||||
"""
|
||||
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
|
||||
|
||||
Args:
|
||||
in_planes (int): Input channel.
|
||||
out_planes (int): Output channel.
|
||||
kernel_size (int): Input kernel size.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
|
||||
"""
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
if groups == 1:
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
|
||||
padding=padding)
|
||||
else:
|
||||
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
|
||||
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
|
||||
self.features = nn.SequentialCell(layers)
|
||||
|
||||
def construct(self, x):
|
||||
output = self.features(x)
|
||||
return output
|
||||
|
||||
|
||||
class InvertedResidual(nn.Cell):
|
||||
"""
|
||||
Mobilenetv2 residual block definition.
|
||||
|
||||
Args:
|
||||
inp (int): Input channel.
|
||||
oup (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
expand_ratio (int): expand ration of input channel
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ResidualBlock(3, 256, 1, 1)
|
||||
"""
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
])
|
||||
self.conv = nn.SequentialCell(layers)
|
||||
self.add = TensorAdd()
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, x):
|
||||
identity = x
|
||||
x = self.conv(x)
|
||||
if self.use_res_connect:
|
||||
return self.add(identity, x)
|
||||
return x
|
||||
|
||||
|
||||
class MobileNetV2(nn.Cell):
|
||||
"""
|
||||
MobileNetV2 architecture.
|
||||
|
||||
Args:
|
||||
class_num (Cell): number of classes.
|
||||
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
|
||||
has_dropout (bool): Is dropout used. Default is false
|
||||
inverted_residual_setting (list): Inverted residual settings. Default is None
|
||||
round_nearest (list): Channel round to . Default is 8
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> MobileNetV2(num_classes=1000)
|
||||
"""
|
||||
def __init__(self, num_classes=1000, width_mult=1.,
|
||||
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
|
||||
super(MobileNetV2, self).__init__()
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
# setting of inverted residual blocks
|
||||
self.cfgs = inverted_residual_setting
|
||||
if inverted_residual_setting is None:
|
||||
self.cfgs = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
||||
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in self.cfgs:
|
||||
output_channel = _make_divisible(c * width_mult, round_nearest)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
|
||||
# make it nn.CellList
|
||||
self.features = nn.SequentialCell(features)
|
||||
# mobilenet head
|
||||
head = ([GlobalAvgPooling(), nn.Dense(self.out_channels, num_classes, has_bias=True)] if not has_dropout else
|
||||
[GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(self.out_channels, num_classes, has_bias=True)])
|
||||
self.head = nn.SequentialCell(head)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def _initialize_weights(self):
|
||||
"""
|
||||
Initialize weights.
|
||||
|
||||
Args:
|
||||
|
||||
Returns:
|
||||
None.
|
||||
|
||||
Examples:
|
||||
>>> _initialize_weights()
|
||||
"""
|
||||
for _, m in self.cells_and_names():
|
||||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape()).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
||||
m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
|
||||
|
||||
def mobilenet_v2(**kwargs):
|
||||
"""
|
||||
Constructs a MobileNet V2 model
|
||||
"""
|
||||
return MobileNetV2(**kwargs)
|
Loading…
Reference in New Issue