2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""ut for batchnorm layer"""
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor, Parameter
|
2020-05-13 11:30:27 +08:00
|
|
|
from mindspore.common.api import _executor
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_bn_pars_valid1():
|
|
|
|
"""ut of BatchNorm parameters' validation"""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nn.BatchNorm2d(num_features=0)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bn_pars_valid2():
|
|
|
|
"""ut of BatchNorm parameters' validation"""
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nn.BatchNorm2d(num_features=3, momentum=-0.1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bn_init():
|
|
|
|
"""ut of BatchNorm parameters' validation"""
|
|
|
|
bn = nn.BatchNorm2d(num_features=3)
|
|
|
|
|
|
|
|
assert isinstance(bn.gamma, Parameter)
|
|
|
|
assert isinstance(bn.beta, Parameter)
|
|
|
|
assert isinstance(bn.moving_mean, Parameter)
|
|
|
|
assert isinstance(bn.moving_variance, Parameter)
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.bn = nn.BatchNorm2d(num_features=3)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
return self.bn(input_x)
|
|
|
|
|
|
|
|
|
|
|
|
def test_compile():
|
|
|
|
net = Net()
|
|
|
|
input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
|
|
|
|
_executor.compile(net, input_data)
|
2020-04-16 13:42:32 +08:00
|
|
|
|
2020-04-16 13:59:32 +08:00
|
|
|
|
2020-04-16 13:42:32 +08:00
|
|
|
class GroupNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(GroupNet, self).__init__()
|
|
|
|
self.group_bn = nn.GroupNorm()
|
2020-05-13 11:30:27 +08:00
|
|
|
|
2020-04-16 13:42:32 +08:00
|
|
|
def construct(self, x):
|
|
|
|
return self.group_bn(x)
|
|
|
|
|
2020-04-16 13:59:32 +08:00
|
|
|
|
2020-04-16 13:42:32 +08:00
|
|
|
def test_compile_groupnorm():
|
|
|
|
net = nn.GroupNorm(16, 64)
|
2020-05-13 11:30:27 +08:00
|
|
|
input_data = Tensor(np.random.rand(1, 64, 256, 256).astype(np.float32))
|
2020-04-16 13:56:12 +08:00
|
|
|
_executor.compile(net, input_data)
|