mindspore/tests/ut/python/nn/test_batchnorm.py

74 lines
2.1 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ut for batchnorm layer"""
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, Parameter
2020-05-13 11:30:27 +08:00
from mindspore.common.api import _executor
def test_bn_pars_valid1():
"""ut of BatchNorm parameters' validation"""
with pytest.raises(ValueError):
nn.BatchNorm2d(num_features=0)
def test_bn_pars_valid2():
"""ut of BatchNorm parameters' validation"""
with pytest.raises(ValueError):
nn.BatchNorm2d(num_features=3, momentum=-0.1)
def test_bn_init():
"""ut of BatchNorm parameters' validation"""
bn = nn.BatchNorm2d(num_features=3)
assert isinstance(bn.gamma, Parameter)
assert isinstance(bn.beta, Parameter)
assert isinstance(bn.moving_mean, Parameter)
assert isinstance(bn.moving_variance, Parameter)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.bn = nn.BatchNorm2d(num_features=3)
def construct(self, input_x):
return self.bn(input_x)
def test_compile():
net = Net()
input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
_executor.compile(net, input_data)
2020-04-16 13:42:32 +08:00
2020-04-16 13:59:32 +08:00
2020-04-16 13:42:32 +08:00
class GroupNet(nn.Cell):
def __init__(self):
super(GroupNet, self).__init__()
self.group_bn = nn.GroupNorm()
2020-05-13 11:30:27 +08:00
2020-04-16 13:42:32 +08:00
def construct(self, x):
return self.group_bn(x)
2020-04-16 13:59:32 +08:00
2020-04-16 13:42:32 +08:00
def test_compile_groupnorm():
net = nn.GroupNorm(16, 64)
2020-05-13 11:30:27 +08:00
input_data = Tensor(np.random.rand(1, 64, 256, 256).astype(np.float32))
2020-04-16 13:56:12 +08:00
_executor.compile(net, input_data)