mindspore/tests/ut/python/exec/test_AssignAdd.py

98 lines
3.1 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
test assign add
"""
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore import Tensor, Parameter
import mindspore as ms
from ..ut_filter import non_graph_engine
from mindspore.common.api import _executor
import mindspore.context as context
import pytest
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
"""Net definition"""
def __init__(self):
super(Net, self).__init__()
self.AssignAdd = P.AssignAdd()
self.inputdata = Parameter(initializer(1, [1], ms.int64), name="global_step")
print("inputdata: ", self.inputdata)
def construct(self, x):
out = self.AssignAdd(self.inputdata, x)
return out
@non_graph_engine
def test_AssignAdd_1():
"""test AssignAdd 1"""
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE)
net = Net()
x = Tensor(np.ones([1]).astype(np.int64)*100)
print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result)
expect = np.ones([1]).astype(np.int64)*101
diff = result.asnumpy() - expect
print("MyPrintExpect:", expect)
print("MyPrintDiff:", diff)
error = np.ones(shape=[1]) * 1.0e-3
assert np.all(diff < error)
@non_graph_engine
def test_AssignAdd_2():
"""test AssignAdd 2"""
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE)
net = Net()
x = Tensor(np.ones([1]).astype(np.int64)*102)
print("MyPrintResult dataX:", x)
result = net(x)
print("MyPrintResult data::", result.asnumpy())
expect = np.ones([1]).astype(np.int64)*103
diff = result.asnumpy() - expect
print("MyPrintExpect:", expect)
print("MyPrintDiff:", diff)
error = np.ones(shape=[1]) * 1.0e-3
assert np.all(diff < error)
class AssignAddNet(nn.Cell):
"""Net definition"""
def __init__(self):
super(AssignAddNet, self).__init__()
self.AssignAdd = P.AssignAdd()
self.inputdata = Parameter(initializer(1, [1], ms.float16), name="KIND_AUTOCAST_SCALAR_TO_TENSOR")
self.one = 1
def construct(self, ixt):
z1 = self.AssignAdd(self.inputdata, self.one)
return z1
@non_graph_engine
def test_assignadd_scalar_cast():
net = AssignAddNet()
x = Tensor(np.ones([1]).astype(np.int64)*102)
#_executor.compile(net, 1)
result = net(x)