forked from mindspore-Ecosystem/mindspore
458 lines
12 KiB
C++
458 lines
12 KiB
C++
|
/**
|
||
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "dataset/core/client.h"
|
||
|
#include "common/common.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
#include <memory>
|
||
|
#include <vector>
|
||
|
#include <iostream>
|
||
|
#include "dataset/core/tensor_shape.h"
|
||
|
#include "dataset/engine/datasetops/source/random_data_op.h"
|
||
|
#include "dataset/engine/data_schema.h"
|
||
|
|
||
|
using namespace mindspore::dataset;
|
||
|
using mindspore::MsLogLevel::INFO;
|
||
|
using mindspore::ExceptionType::NoExceptionType;
|
||
|
using mindspore::LogStream;
|
||
|
|
||
|
class MindDataTestRandomDataOp : public UT::DatasetOpTesting {
|
||
|
|
||
|
};
|
||
|
|
||
|
// Test info:
|
||
|
// - Simple test with a user-provided schema generated purely from DataSchema C API
|
||
|
// - has an interation loop
|
||
|
//
|
||
|
// Tree: single node tree with RandomDataOp
|
||
|
//
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpBasic1) {
|
||
|
Status rc;
|
||
|
int32_t rank = 0; // not used
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpBasic1";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
// Create a schema using the C api's
|
||
|
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
|
||
|
|
||
|
// RandomDataOp can randomly fill in unknown dimension lengths of a shape.
|
||
|
// Most other ops cannot do that as they are limited by the physical data itself. We're
|
||
|
// more flexible with random data since it is just making stuff up on the fly.
|
||
|
TensorShape c1Shape({TensorShape::kDimUnknown, TensorShape::kDimUnknown, 3});
|
||
|
ColDescriptor c1("image",
|
||
|
DataType(DataType::DE_INT8),
|
||
|
TensorImpl::kFlexible,
|
||
|
rank, // not used
|
||
|
&c1Shape);
|
||
|
|
||
|
// Column 2 will just be a scalar label number
|
||
|
TensorShape c2Shape({}); // empty shape is a 1-value scalar Tensor
|
||
|
ColDescriptor c2("label",
|
||
|
DataType(DataType::DE_UINT32),
|
||
|
TensorImpl::kFlexible,
|
||
|
rank,
|
||
|
&c2Shape);
|
||
|
|
||
|
testSchema->AddColumn(c1);
|
||
|
testSchema->AddColumn(c2);
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(1)
|
||
|
.SetDataSchema(std::move(testSchema))
|
||
|
.SetTotalRows(25)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::ostringstream ss;
|
||
|
ss << *myRandomDataOp;
|
||
|
MS_LOG(INFO) << "RandomDataOp print: %s" << ss.str();
|
||
|
|
||
|
MS_LOG(INFO) << "Launching tree and begin iteration";
|
||
|
rc = myTree->Prepare();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->Launch();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
// Start the loop of reading tensors from our pipeline
|
||
|
DatasetIterator dI(myTree);
|
||
|
TensorRow tensorList;
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
int rowCount = 0;
|
||
|
while (!tensorList.empty()) {
|
||
|
// Don't display these rows...too big to show
|
||
|
MS_LOG(INFO) << "Row fetched #: " << rowCount;
|
||
|
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rowCount++;
|
||
|
}
|
||
|
ASSERT_EQ(rowCount, 25);
|
||
|
}
|
||
|
|
||
|
// Test info:
|
||
|
// - Simple test with a randomly generated schema
|
||
|
// - no iteration loop on this one, just create the op
|
||
|
//
|
||
|
// Tree: single node tree with RandomDataOp
|
||
|
//
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpBasic2) {
|
||
|
Status rc;
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpBasic2";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(1)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::ostringstream ss;
|
||
|
ss << *myRandomDataOp;
|
||
|
MS_LOG(INFO) << "RandomDataOp print: " << ss.str();
|
||
|
}
|
||
|
|
||
|
// Test info:
|
||
|
// - json file test with iteration
|
||
|
//
|
||
|
// Tree: single node tree with RandomDataOp
|
||
|
//
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpBasic3) {
|
||
|
Status rc;
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpBasic3";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
|
||
|
rc = testSchema->LoadSchemaFile(datasets_root_path_ + "/testRandomData/datasetSchema.json", {});
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(1)
|
||
|
.SetDataSchema(std::move(testSchema))
|
||
|
.SetTotalRows(10)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::ostringstream ss;
|
||
|
ss << *myRandomDataOp;
|
||
|
MS_LOG(INFO) << "RandomDataOp print: " << ss.str();
|
||
|
|
||
|
MS_LOG(INFO) << "Launching tree and begin iteration";
|
||
|
rc = myTree->Prepare();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->Launch();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
// Start the loop of reading tensors from our pipeline
|
||
|
DatasetIterator dI(myTree);
|
||
|
TensorRow tensorList;
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
int rowCount = 0;
|
||
|
while (!tensorList.empty()) {
|
||
|
// Don't display these rows...too big to show
|
||
|
MS_LOG(INFO) << "Row fetched #: " << rowCount;
|
||
|
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rowCount++;
|
||
|
}
|
||
|
ASSERT_EQ(rowCount, 10);
|
||
|
}
|
||
|
|
||
|
// Test info:
|
||
|
// - json schema input it's a fairly simple one
|
||
|
// - has an interation loop
|
||
|
//
|
||
|
// Tree: RepeatOp over RandomDataOp
|
||
|
//
|
||
|
// RepeatOp
|
||
|
// |
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpBasic4) {
|
||
|
Status rc;
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpBasic4";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
|
||
|
rc = testSchema->LoadSchemaFile(datasets_root_path_ + "/testRandomData/datasetSchema2.json", {});
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(1)
|
||
|
.SetDataSchema(std::move(testSchema))
|
||
|
.SetTotalRows(10)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
uint32_t numRepeats = 2;
|
||
|
std::shared_ptr<RepeatOp> myRepeatOp;
|
||
|
rc = RepeatOp::Builder(numRepeats)
|
||
|
.Build(&myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->AssociateNode(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myRepeatOp->AddChild(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
MS_LOG(INFO) << "Launching tree and begin iteration";
|
||
|
rc = myTree->Prepare();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->Launch();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
// Start the loop of reading tensors from our pipeline
|
||
|
DatasetIterator dI(myTree);
|
||
|
TensorRow tensorList;
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
int rowCount = 0;
|
||
|
while (!tensorList.empty()) {
|
||
|
MS_LOG(INFO) << "Row display for row #: " << rowCount;
|
||
|
|
||
|
// Display the tensor by calling the printer on it
|
||
|
for (int i = 0; i < tensorList.size(); i++) {
|
||
|
std::ostringstream ss;
|
||
|
ss << *tensorList[i] << std::endl;
|
||
|
MS_LOG(INFO) << "Tensor print: %s" << ss.str();
|
||
|
}
|
||
|
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rowCount++;
|
||
|
}
|
||
|
ASSERT_EQ(rowCount, 20);
|
||
|
}
|
||
|
|
||
|
// Test info:
|
||
|
// - json schema input it's a fairly simple one
|
||
|
// - has an interation loop
|
||
|
// - same as MindDataTestRandomDataOpBasic4 except that this one will have parallel workers
|
||
|
//
|
||
|
// Tree: RepeatOp over RandomDataOp
|
||
|
//
|
||
|
// RepeatOp
|
||
|
// |
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpBasic5) {
|
||
|
Status rc;
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpBasic5";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
|
||
|
rc = testSchema->LoadSchemaFile(datasets_root_path_ + "/testRandomData/datasetSchema2.json", {});
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(4)
|
||
|
.SetDataSchema(std::move(testSchema))
|
||
|
.SetTotalRows(10)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
uint32_t numRepeats = 3;
|
||
|
std::shared_ptr<RepeatOp> myRepeatOp;
|
||
|
rc = RepeatOp::Builder(numRepeats)
|
||
|
.Build(&myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->AssociateNode(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myRepeatOp->AddChild(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
MS_LOG(INFO) << "Launching tree and begin iteration";
|
||
|
rc = myTree->Prepare();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->Launch();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
// Start the loop of reading tensors from our pipeline
|
||
|
DatasetIterator dI(myTree);
|
||
|
TensorRow tensorList;
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
int rowCount = 0;
|
||
|
while (!tensorList.empty()) {
|
||
|
MS_LOG(INFO) << "Row display for row #: " << rowCount;
|
||
|
|
||
|
// Display the tensor by calling the printer on it
|
||
|
for (int i = 0; i < tensorList.size(); i++) {
|
||
|
std::ostringstream ss;
|
||
|
ss << *tensorList[i] << std::endl;
|
||
|
MS_LOG(INFO) << "Tensor print: ", ss.str();
|
||
|
}
|
||
|
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rowCount++;
|
||
|
}
|
||
|
ASSERT_EQ(rowCount, 30);
|
||
|
}
|
||
|
|
||
|
// Test info:
|
||
|
// - repeat shuffle random
|
||
|
//
|
||
|
// Tree: RepeatOp over RandomDataOp
|
||
|
//
|
||
|
// RepeatOp
|
||
|
// |
|
||
|
// ShuffleOp
|
||
|
// |
|
||
|
// RandomDataOp
|
||
|
//
|
||
|
TEST_F(MindDataTestRandomDataOp, RandomDataOpTree1) {
|
||
|
Status rc;
|
||
|
MS_LOG(INFO) << "UT test RandomDataOpTree1";
|
||
|
|
||
|
// Start with an empty execution tree
|
||
|
auto myTree = std::make_shared<ExecutionTree>();
|
||
|
|
||
|
std::unique_ptr<DataSchema> testSchema = std::make_unique<DataSchema>();
|
||
|
rc = testSchema->LoadSchemaFile(datasets_root_path_ + "/testRandomData/datasetSchema2.json", {});
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::shared_ptr<RandomDataOp> myRandomDataOp;
|
||
|
RandomDataOp::Builder builder;
|
||
|
|
||
|
rc = builder.SetRowsPerBuffer(2)
|
||
|
.SetNumWorkers(4)
|
||
|
.SetDataSchema(std::move(testSchema))
|
||
|
.SetTotalRows(10)
|
||
|
.Build(&myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssociateNode(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
std::shared_ptr<ShuffleOp> myShuffleOp;
|
||
|
rc = ShuffleOp::Builder()
|
||
|
.SetRowsPerBuffer(2)
|
||
|
.SetShuffleSize(4)
|
||
|
.Build(&myShuffleOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->AssociateNode(myShuffleOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
uint32_t numRepeats = 3;
|
||
|
std::shared_ptr<RepeatOp> myRepeatOp;
|
||
|
rc = RepeatOp::Builder(numRepeats)
|
||
|
.Build(&myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->AssociateNode(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myRepeatOp->AddChild(myShuffleOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myShuffleOp->AddChild(myRandomDataOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
rc = myTree->AssignRoot(myRepeatOp);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
MS_LOG(INFO) << "Launching tree and begin iteration";
|
||
|
rc = myTree->Prepare();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rc = myTree->Launch();
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
|
||
|
// Start the loop of reading tensors from our pipeline
|
||
|
DatasetIterator dI(myTree);
|
||
|
TensorRow tensorList;
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
int rowCount = 0;
|
||
|
while (!tensorList.empty()) {
|
||
|
MS_LOG(INFO) << "Row display for row #: " << rowCount;
|
||
|
|
||
|
// Display the tensor by calling the printer on it
|
||
|
for (int i = 0; i < tensorList.size(); i++) {
|
||
|
std::ostringstream ss;
|
||
|
ss << *tensorList[i] << std::endl;
|
||
|
MS_LOG(INFO) << "Tensor print: " << ss.str();
|
||
|
}
|
||
|
|
||
|
rc = dI.FetchNextTensorRow(&tensorList);
|
||
|
EXPECT_TRUE(rc.IsOk());
|
||
|
rowCount++;
|
||
|
}
|
||
|
ASSERT_EQ(rowCount, 30);
|
||
|
}
|