mindspore/example/resnet101_imagenet2012/dataset.py

90 lines
3.0 KiB
Python
Executable File

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from config import config
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
"""
create a train or evaluate dataset
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
Returns:
dataset
"""
device_num = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if device_num == 1:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
resize_height = 224
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
decode_op = C.Decode()
random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100)
horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
resize_op_256 = C.Resize((256, 256))
center_crop = C.CenterCrop(224)
rescale_op = C.Rescale(rescale, shift)
normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278))
changeswap_op = C.HWC2CHW()
trans = []
if do_train:
trans = [decode_op,
random_resize_crop_op,
horizontal_flip_op,
rescale_op,
normalize_op,
changeswap_op]
else:
trans = [decode_op,
resize_op_256,
center_crop,
rescale_op,
normalize_op,
changeswap_op]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans)
ds = ds.map(input_columns="label", operations=type_cast_op)
# apply shuffle operations
ds = ds.shuffle(buffer_size=config.buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds