forked from mindspore-Ecosystem/mindspore
101 lines
4.1 KiB
Python
101 lines
4.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# less required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""Evaluation for SSD"""
|
|
|
|
import os
|
|
import argparse
|
|
import time
|
|
import numpy as np
|
|
from mindspore import context, Tensor
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from src.ssd import SSD300, ssd_mobilenet_v2
|
|
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image
|
|
from src.config import config
|
|
from src.coco_eval import metrics
|
|
|
|
def ssd_eval(dataset_path, ckpt_path):
|
|
"""SSD evaluation."""
|
|
batch_size = 1
|
|
ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False)
|
|
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
|
|
print("Load Checkpoint!")
|
|
param_dict = load_checkpoint(ckpt_path)
|
|
net.init_parameters_data()
|
|
load_param_into_net(net, param_dict)
|
|
|
|
net.set_train(False)
|
|
i = batch_size
|
|
total = ds.get_dataset_size() * batch_size
|
|
start = time.time()
|
|
pred_data = []
|
|
print("\n========================================\n")
|
|
print("total images num: ", total)
|
|
print("Processing, please wait a moment.")
|
|
for data in ds.create_dict_iterator():
|
|
img_id = data['img_id']
|
|
img_np = data['image']
|
|
image_shape = data['image_shape']
|
|
|
|
output = net(Tensor(img_np))
|
|
for batch_idx in range(img_np.shape[0]):
|
|
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
|
|
"box_scores": output[1].asnumpy()[batch_idx],
|
|
"img_id": int(np.squeeze(img_id[batch_idx])),
|
|
"image_shape": image_shape[batch_idx]})
|
|
percent = round(i / total * 100., 2)
|
|
|
|
print(f' {str(percent)} [{i}/{total}]', end='\r')
|
|
i += batch_size
|
|
cost_time = int((time.time() - start) * 1000)
|
|
print(f' 100% [{total}/{total}] cost {cost_time} ms')
|
|
mAP = metrics(pred_data)
|
|
print("\n========================================\n")
|
|
print(f"mAP: {mAP}")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='SSD evaluation')
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
|
|
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
|
|
args_opt = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
|
|
prefix = "ssd_eval.mindrecord"
|
|
mindrecord_dir = config.mindrecord_dir
|
|
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
|
|
if not os.path.exists(mindrecord_file):
|
|
if not os.path.isdir(mindrecord_dir):
|
|
os.makedirs(mindrecord_dir)
|
|
if args_opt.dataset == "coco":
|
|
if os.path.isdir(config.coco_root):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("coco", False, prefix)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
print("coco_root not exits.")
|
|
else:
|
|
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
|
|
print("Create Mindrecord.")
|
|
data_to_mindrecord_byte_image("other", False, prefix)
|
|
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
|
|
else:
|
|
print("IMAGE_DIR or ANNO_PATH not exits.")
|
|
|
|
print("Start Eval!")
|
|
ssd_eval(mindrecord_file, args_opt.checkpoint_path)
|