mindspore/model_zoo/ssd/eval.py

101 lines
4.1 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for SSD"""
import os
import argparse
import time
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.ssd import SSD300, ssd_mobilenet_v2
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image
from src.config import config
from src.coco_eval import metrics
def ssd_eval(dataset_path, ckpt_path):
"""SSD evaluation."""
batch_size = 1
ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False)
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
print("Load Checkpoint!")
param_dict = load_checkpoint(ckpt_path)
net.init_parameters_data()
load_param_into_net(net, param_dict)
net.set_train(False)
i = batch_size
total = ds.get_dataset_size() * batch_size
start = time.time()
pred_data = []
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
for data in ds.create_dict_iterator():
img_id = data['img_id']
img_np = data['image']
image_shape = data['image_shape']
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx]})
percent = round(i / total * 100., 2)
print(f' {str(percent)} [{i}/{total}]', end='\r')
i += batch_size
cost_time = int((time.time() - start) * 1000)
print(f' 100% [{total}/{total}] cost {cost_time} ms')
mAP = metrics(pred_data)
print("\n========================================\n")
print(f"mAP: {mAP}")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SSD evaluation')
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
prefix = "ssd_eval.mindrecord"
mindrecord_dir = config.mindrecord_dir
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
if not os.path.exists(mindrecord_file):
if not os.path.isdir(mindrecord_dir):
os.makedirs(mindrecord_dir)
if args_opt.dataset == "coco":
if os.path.isdir(config.coco_root):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("coco", False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("coco_root not exits.")
else:
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("other", False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("IMAGE_DIR or ANNO_PATH not exits.")
print("Start Eval!")
ssd_eval(mindrecord_file, args_opt.checkpoint_path)