!1023 add_gatherv2_distributed_op

Merge pull request !1023 from lichen/add_gatherv2_distributed_op
This commit is contained in:
mindspore-ci-bot 2020-05-11 09:18:10 +08:00 committed by Gitee
commit dd2062bf8d
13 changed files with 728 additions and 21 deletions

View File

@ -787,5 +787,90 @@ double LayerNormCost::GetForwardComputationCost(const std::vector<TensorInfo> &i
}
return result;
}
double GatherV2PCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const {
double result = 0.0;
if (outputs_type_lengths_.size() != outputs.size()) {
MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size() << " for gatherv2 cost";
}
// don't split axis
if (strategy_.at(IntToSize(axis_)) == 1) {
return result;
}
// split axis
auto param_shape = inputs[0].slice_shape();
auto index_shape = inputs[1].slice_shape();
Shape reducescatter_shape = index_shape;
if (param_shape.size() == 2) {
reducescatter_shape.push_back(param_shape.at(1 - axis_));
}
result += ListProduct(reducescatter_shape) * static_cast<double>(outputs_type_lengths_[0]);
return result;
}
double GatherV2PCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const {
double result = 0.0;
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
for (size_t j = 0; j < inputs.size(); ++j) {
if (!is_parameter_[j]) {
continue;
}
TensorInfo input_a_tensor_info = inputs[j];
Shape input_a_shape = input_a_tensor_info.shape();
Shape input_a_slice_shape = input_a_tensor_info.slice_shape();
int32_t used_device_num = 1;
for (size_t i = 0; i < input_a_shape.size(); ++i) {
used_device_num *= input_a_shape[i] / input_a_slice_shape[i];
}
if (total_device_num != IntToSize(used_device_num)) {
result += ListProduct(input_a_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
}
}
return result;
}
double GatherV2PCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs,
const std::vector<TensorInfo> &outputs, int32_t stage_id) const {
double result = 0.0;
Shape input0_slice_shape = inputs[0].slice_shape();
Shape input1_slice_shape = inputs[1].slice_shape();
if (inputs_type_lengths_.size() != inputs.size()) {
MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size() << " for gatherv2 cost";
}
// don't split axis
if (strategy_.at(IntToSize(axis_)) == 1) {
result += ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) +
ListProduct(input1_slice_shape) * static_cast<double>(inputs_type_lengths_[1]);
} else {
// split axis
result += ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) * GATHERV2_COST_WEIGHT0 +
ListProduct(input1_slice_shape) * static_cast<double>(inputs_type_lengths_[1]) * GATHERV2_COST_WEIGHT1;
}
return result;
}
double GatherV2PCost::GetBackwardComputationCost(const std::vector<TensorInfo> &inputs,
const std::vector<TensorInfo> &outputs, int32_t) const {
double result = 0.0;
Shape input1_slice_shape = inputs[1].slice_shape();
Shape output0_slice_shape = outputs[0].slice_shape();
// don't split axis
if (strategy_.at(IntToSize(axis_)) == 1) {
result += ListProduct(output0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
} else {
// split axis
result += ListProduct(output0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) * GATHERV2_COST_WEIGHT2 +
ListProduct(input1_slice_shape) * static_cast<double>(inputs_type_lengths_[1]) * GATHERV2_COST_WEIGHT3;
}
return result;
}
} // namespace parallel
} // namespace mindspore

View File

@ -27,6 +27,10 @@ namespace parallel {
#define MAXIMUM_INPUT_NUMBER 100
#define DEFAULT_DATA_TYPE_LENGTH 4
#define DROPOUT_COST_RATE 1.125 // the DropoutGenMask need 12.5% memory
#define GATHERV2_COST_WEIGHT0 3
#define GATHERV2_COST_WEIGHT1 7
#define GATHERV2_COST_WEIGHT2 2
#define GATHERV2_COST_WEIGHT3 6
class OperatorCost;
using OperatorCostPtr = std::shared_ptr<OperatorCost>;
@ -609,6 +613,38 @@ class GatherV2Cost : public OperatorCost {
};
using GatherV2CostPtr = std::shared_ptr<GatherV2Cost>;
class GatherV2PCost : public OperatorCost {
public:
explicit GatherV2PCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
GatherV2PCost() : OperatorCost(true) {}
~GatherV2PCost() override = default;
double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t) const override;
void set_axis(int32_t axis) { axis_ = axis; }
void set_strategy(const Shape &strategy) { strategy_ = strategy; }
protected:
int32_t axis_;
Shape strategy_;
};
using GatherV2PCostPtr = std::shared_ptr<GatherV2PCost>;
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_OPERATOR_COSTMODEL_H_

View File

@ -129,6 +129,7 @@ REGISTER(ExpandDimsInfo);
REGISTER(SqueezeInfo);
REGISTER(SigmoidCrossEntropyWithLogitsInfo);
REGISTER(SquareInfo);
REGISTER(GatherV2PInfo);
} // namespace parallel
} // namespace mindspore

View File

@ -41,6 +41,7 @@ ValuePtr CreatOpInstance(const OperatorAttrs &attrs, const OperatorName &op_name
AnfNodePtr CreatTypeInt(int32_t value);
AnfNodePtr CreatInt32Imm(int32_t value);
AnfNodePtr CreateInt32Tensor(int32_t value);
AnfNodePtr ValuePtrToAnfNodePtr(const ValuePtr &value_ptr);
std::string HashInstanceName(const std::string &name);
class GenerateGraph {

View File

@ -0,0 +1,339 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel/ops_info/gather_v2_p_info.h"
#include <vector>
#include <numeric>
#include <functional>
#include <utility>
#include "parallel/device_matrix.h"
#include "parallel/graph_util/generate_graph.h"
namespace mindspore {
namespace parallel {
Status GatherV2PInfo::GetAttrs() {
// get axis, the third input is the axis, is a ValueNode
if (input_value_.at(2) == nullptr) {
MS_LOG(ERROR) << name_ << ": the third input value is nullptr, is not a ValueNode!";
return FAILED;
}
auto axis = GetValue<int>(input_value_.at(2));
// if axis is negative then convert it to positive
auto params_shape = inputs_shape_.at(0);
if (params_shape.size() == 0) {
MS_LOG(ERROR) << name_ << ": params can not be a scalar!";
return FAILED;
}
if (axis < 0) {
axis += SizeToInt(inputs_shape_[0].size());
}
axis_ = axis;
return SUCCESS;
}
Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
if (CheckStrategyValue(strategy, {inputs_shape_.at(0)}, is_auto_parallel_) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << ": Invalid strategy.";
} else {
MS_LOG(ERROR) << name_ << ": Invalid strategy.";
}
return FAILED;
}
// only support 1-dim and 2-dim param
if (inputs_shape_.at(0).size() != 1 && inputs_shape_.at(0).size() != 2) {
MS_LOG(ERROR) << name_ << ": Don't support param dim " << inputs_shape_.at(0).size();
return FAILED;
}
// don't support scalar index
if (inputs_shape_.at(1).size() == 0) {
MS_LOG(ERROR) << name_ << ": Don't support scalar index.";
return FAILED;
}
// axis=0, index_shape(0)%param_strategy(0) must be 0
Shape index_shape = inputs_shape_.at(1);
auto param_strategy = strategy->GetInputDim().at(0);
if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0)) {
MS_LOG(ERROR) << name_ << ": index_shape(0) can't be divided by param_strategy(0).";
return FAILED;
}
// axis != 0, param_shape(0)%(param_strategy(0)*param_strategy(axis)) must be 0
Shape param_shape = inputs_shape_.at(0);
if (axis_ != 0 && param_shape.at(0) % (param_strategy.at(0) * param_strategy.at(IntToSize(axis_))) != 0) {
MS_LOG(ERROR) << name_ << ": index_shape(0) can't be divided by (param_strategy(0)*param_strategy(axis)).";
return FAILED;
}
// Don't support repeated calc
auto params_strategy = strategy->GetInputDim().at(0);
CheckGlobalDeviceManager();
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
auto product = std::accumulate(params_strategy.begin(), params_strategy.end(), 1, std::multiplies<int>());
if (dev_num != IntToSize(product)) {
MS_LOG(ERROR) << name_ << ": Invalid strategy. Don't support repeated calc.";
return FAILED;
}
return SUCCESS;
}
Status GatherV2PInfo::InferDevMatrixShape() {
dev_matrix_shape_.clear();
out_dev_matrix_shape_.clear();
// infer input dev_matrix_shape
auto params_strategy = strategy_->GetInputDim().at(0);
dev_matrix_shape_ = params_strategy;
// infer out dev_matrix_shape
// axis!=0, split axis
if (axis_ != 0 && params_strategy.at(IntToSize(axis_)) != 1) {
out_dev_matrix_shape_.push_back(params_strategy.at(0) * params_strategy.at(IntToSize(axis_)));
for (size_t i = 1; i < params_strategy.size(); ++i) {
if (i == IntToSize(axis_)) {
out_dev_matrix_shape_.push_back(1);
} else {
out_dev_matrix_shape_.push_back(params_strategy.at(i));
}
}
} else {
out_dev_matrix_shape_ = params_strategy;
}
return SUCCESS;
}
Status GatherV2PInfo::InferTensorMap() {
// infer input tensor map
size_t param_size = inputs_shape_.at(0).size();
size_t index_size = inputs_shape_.at(1).size();
std::vector<int32_t> tensor_map_index(index_size, -1);
std::vector<int32_t> tensor_map_params;
for (size_t i = 0; i < param_size; ++i) {
tensor_map_params.push_back(SizeToInt(param_size - i - 1));
}
// infer output tensor map
std::vector<int32_t> tensor_map_out;
if (axis_ == 0) {
tensor_map_out.push_back(SizeToInt(param_size - 1));
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1);
for (size_t i = 1; i < param_size; ++i) {
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
}
} else {
for (size_t i = 0; i < param_size; ++i) {
if (i == IntToSize(axis_)) {
tensor_map_out.insert(tensor_map_out.end(), index_size, -1);
} else {
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
}
}
}
inputs_tensor_map_.emplace_back(std::move(tensor_map_params));
inputs_tensor_map_.emplace_back(std::move(tensor_map_index));
outputs_tensor_map_.emplace_back(std::move(tensor_map_out));
return SUCCESS;
}
Status GatherV2PInfo::InferTensorInfo() {
// infer tensor shape
Shape input_shape = inputs_shape_.at(0);
Shape input_index_shape = inputs_shape_.at(1);
Shape output_shape = outputs_shape_.at(0);
// infer tensor layout
TensorLayout input_tensor_layout, input_index_layout, output_tensor_layout;
if ((input_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_.at(0), input_shape) != SUCCESS) ||
(input_index_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_.at(1), input_index_shape) != SUCCESS) ||
(output_tensor_layout.InitFromVector(out_dev_matrix_shape_, outputs_tensor_map_.at(0), output_shape) !=
SUCCESS)) {
return FAILED;
}
// infer tensor info
TensorInfo input_tensor_info(input_tensor_layout);
TensorInfo input_index_info(input_index_layout);
TensorInfo output_tensor_info(output_tensor_layout);
inputs_tensor_info_.push_back(input_tensor_info);
inputs_tensor_info_.push_back(input_index_info);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}
Status GatherV2PInfo::InferBias() {
CheckGlobalDeviceManager();
int32_t rank = g_device_manager->global_rank();
auto input_shape = inputs_shape_.at(0);
auto params_strategy = strategy_->GetInputDim().at(0);
// params_size=1, axis=0
if ((input_shape.size() == 1) && (axis_ == 0)) {
slice_size_ = input_shape.at(0) / params_strategy.at(0);
bias_ = rank * slice_size_;
return SUCCESS;
}
// params_size=2, axis=0
if ((input_shape.size() == 2) && (axis_ == 0)) {
slice_size_ = input_shape.at(0) / params_strategy.at(0);
bias_ = rank / params_strategy.at(1) * slice_size_;
return SUCCESS;
}
// params_size=2, axis=1
if ((input_shape.size() == 2) && (axis_ == 1)) {
slice_size_ = input_shape.at(1) / params_strategy.at(1);
bias_ = rank % params_strategy.at(1) * slice_size_;
return SUCCESS;
}
MS_LOG(ERROR) << name_ << ": Don't support params_size:" << input_shape.size() << " axis:" << axis_;
return FAILED;
}
Status GatherV2PInfo::InferGroup() {
std::vector<Group> group_list;
if (CreateGroupByDim(IntToSize(axis_), &group_list) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Create group failed.";
return FAILED;
}
group_ = group_list.at(0);
return SUCCESS;
}
Status GatherV2PInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
GenerateGraph gen_g = GenerateGraph();
if (gen_g.Init(cnode) != SUCCESS) {
MS_LOG(ERROR) << "GenerateGraph Init failed";
return FAILED;
}
if (InferBias() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer Bias failed.";
return FAILED;
}
auto sub = gen_g.PushBack({gen_g.NewOpInst(SUB), gen_g.virtual_input_node(), CreateInt32Tensor(bias_)});
auto relu = gen_g.PushBack({gen_g.NewOpInst(RELU), sub});
auto minimum = gen_g.PushBack({gen_g.NewOpInst(MINIMUM), relu, CreateInt32Tensor(slice_size_ - 1)});
auto equal = gen_g.PushBack({gen_g.NewOpInst(EQUAL), gen_g.virtual_input_node(), minimum});
auto gather_v2 =
gen_g.PushBack({gen_g.NewOpInst(GATHERV2), gen_g.virtual_input_node(), minimum, CreatInt32Imm(axis_)});
auto dtype = gen_g.PushBack({gen_g.NewOpInst(DTYPE), gather_v2});
auto cast = gen_g.PushBack({gen_g.NewOpInst(CAST), equal, dtype});
auto expand_dims = gen_g.PushBack({gen_g.NewOpInst(EXPAND_DIMS), cast, CreatInt32Imm(axis_ - 1)});
auto mul = gen_g.PushBack({gen_g.NewOpInst(MUL), gather_v2, expand_dims});
// don't need expandim,if param_size = 1,
if (inputs_shape_.at(0).size() == 1) {
mul = gen_g.PushBack({gen_g.NewOpInst(MUL), gather_v2, cast});
}
if (InferGroup() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer Group failed.";
return FAILED;
}
Attr attr_op = std::make_pair(OP, MakeValue(REDUCE_OP_SUM));
Attr attr_group = std::make_pair(GROUP, MakeValue(group_.name()));
OperatorAttrs attrs = {attr_op, attr_group};
auto reduce_scatter = gen_g.PushBack({gen_g.NewOpInst(REDUCE_SCATTER, attrs), mul});
std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(sub, 2), std::make_pair(gather_v2, 1),
std::make_pair(equal, 2)};
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>(
std::make_pair(input_nodes, reduce_scatter));
return SUCCESS;
}
Status GatherV2PInfo::Init(const StrategyPtr &strategy) {
auto param_strategy = strategy->GetInputDim().at(0);
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
if (param_strategy.at(IntToSize(axis_)) != 1 && ComputeReplaceGraph(cnode_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": ComputeReplaceGraph failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}
Status GatherV2PInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << ": Init for cost model failed.";
} else {
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
}
return FAILED;
}
auto param_strategy = strategy_->GetInputDim().at(0);
// cost model set axis and strategy
auto gatherv2_2cost = std::dynamic_pointer_cast<GatherV2PCost>(operator_cost());
gatherv2_2cost->set_axis(axis_);
gatherv2_2cost->set_strategy(param_strategy);
MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
Status GatherV2PInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
if (SetCostUnderStrategyBase(strategy) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << ": Set cost under strategy failed.";
} else {
MS_LOG(ERROR) << name_ << ": Set cost under strategy failed.";
}
return FAILED;
}
return SUCCESS;
}
Status GatherV2PInfo::GenerateStrategies(int32_t stage_id) {
is_auto_parallel_ = true;
Shape input0_split(inputs_shape_[0].size(), 1);
Shapes splittable_inputs = {input0_split};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, {inputs_shape_.at(0)}, splittable_inputs, &sp_vector) !=
SUCCESS) {
MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed.";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << " : Successfully generated " << success << " strategy";
PrintStrategy(sp);
}
}
return SUCCESS;
}
std::shared_ptr<std::vector<std::vector<int32_t>>> GatherV2PInfo::GenerateBatchStrategies() {
CheckGlobalDeviceManager();
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
Dimensions strategy;
strategy.push_back(SizeToInt(dev_num));
for (size_t i = 1; i < inputs_shape_[0].size(); i++) {
strategy.push_back(1);
}
std::vector<Dimensions> strategy_v = {strategy};
return std::make_shared<std::vector<std::vector<int32_t>>>(strategy_v);
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,67 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_P_INFO_H_
#define MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_P_INFO_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ir/value.h"
#include "parallel/auto_parallel/operator_costmodel.h"
#include "parallel/ops_info/operator_info.h"
#include "parallel/strategy.h"
namespace mindspore {
namespace parallel {
class GatherV2PInfo : public OperatorInfo {
public:
GatherV2PInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<GatherV2PCost>()) {}
~GatherV2PInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int32_t stage_id) override;
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
std::shared_ptr<std::vector<std::vector<int32_t>>> GenerateBatchStrategies() override;
protected:
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferMirrorOps() override { return SUCCESS; }
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
Status GetAttrs() override;
private:
Status ComputeReplaceGraph(const CNodePtr &cnode);
Status InferBias();
Status InferGroup();
int32_t axis_;
int32_t bias_;
int32_t slice_size_;
Shape out_dev_matrix_shape_;
Group group_;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_P_INFO_H_

View File

@ -215,9 +215,9 @@ Status OneHotInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
OperatorAttrs attrs_onehot = {attr_onehot_axis};
auto onehot = gen_g.PushBack({gen_g.NewOpInst(ONEHOT, attrs_onehot), sub2, CreatInt32Imm(classes_each_device_),
cnode->input(3), cnode->input(4)});
std::vector<AnfNodePtr> input_nodes = {floor_div, sub1};
replace_graph_ =
std::make_shared<std::pair<std::vector<AnfNodePtr>, AnfNodePtr>>(std::make_pair(input_nodes, onehot));
std::vector<std::pair<AnfNodePtr, int>> input_nodes = {std::make_pair(floor_div, 1), std::make_pair(sub1, 1)};
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>(
std::make_pair(input_nodes, onehot));
return SUCCESS;
}

View File

@ -48,7 +48,7 @@ using TensorLayouts = std::vector<TensorLayout>;
using different_type = std::vector<int32_t>::difference_type;
using PrimitiveAttrs = std::unordered_map<std::string, ValuePtr>;
using Strategys = std::vector<Dimensions>;
using ReplaceGraphPtr = std::shared_ptr<std::pair<std::vector<AnfNodePtr>, AnfNodePtr>>;
using ReplaceGraphPtr = std::shared_ptr<std::pair<std::vector<std::pair<AnfNodePtr, int>>, AnfNodePtr>>;
class Edge;

View File

@ -36,5 +36,6 @@
#include "parallel/ops_info/reshape_info.h"
#include "parallel/ops_info/transpose_info.h"
#include "parallel/ops_info/virtual_dataset_info.h"
#include "parallel/ops_info/gather_v2_p_info.h"
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_HEAD_FILES_H_

View File

@ -114,7 +114,7 @@ constexpr char BE_CLONED_INDEX[] = "be_cloned_index";
constexpr char GROUP_RANKS[] = "group_ranks";
constexpr char IS_IN_FORWARD[] = "is_in_forward";
constexpr char DEFAULT_INPUT[] = "default_input";
constexpr char DTYPE[] = "dtype";
constexpr char DTYPE[] = "DType";
constexpr char DEV_NUM[] = "dev_num";
constexpr char MEAN_FLAG[] = "mean_flag";
constexpr char TYPES[] = "types";
@ -124,6 +124,7 @@ constexpr char SHARED_NAME[] = "shared_name";
constexpr char MIRROR_OP[] = "mirror_op";
constexpr char FORWARD_OP[] = "forward_op";
constexpr char REDISTRIBUTION_OP[] = "redistribution_op";
constexpr char DARA_PARALLEL[] = "data_parallel";
// Operator
constexpr char VIRTUAL_DIV[] = "_VirtualDiv";

View File

@ -605,8 +605,7 @@ bool IsSomePrimitive(const CNodePtr &cnode, const std::string &name) {
return (prim->name() == name);
}
void StepReplaceGraph(const std::shared_ptr<std::pair<std::vector<AnfNodePtr>, AnfNodePtr>> &replace_graph,
const CNodePtr &node) {
void StepReplaceGraph(const ReplaceGraphPtr &replace_graph, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(replace_graph);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(replace_graph->second);
@ -616,20 +615,10 @@ void StepReplaceGraph(const std::shared_ptr<std::pair<std::vector<AnfNodePtr>, A
if (manager == nullptr) {
MS_LOG(EXCEPTION) << "Failure:AddNode error since manager is nullptr";
}
if (!IsSomePrimitive(node, ONEHOT)) {
MS_LOG(EXCEPTION) << "Failure:Only OneHot Primitive will enter StepReplaceGraph!";
}
if (node->inputs().size() != 5) {
MS_LOG(EXCEPTION) << "Failure:There is 5 inputs for the CNode corresponding to OneHot Primitive!";
}
auto pre_node = node->input(1);
if (replace_graph->first.size() != 2) {
MS_LOG(EXCEPTION) << "Failure:replace_graph->first.size() must be 2 for OneHot Primitive!";
}
for (auto &replace_input : replace_graph->first) {
MS_EXCEPTION_IF_NULL(replace_input);
manager->SetEdge(replace_input, 1, pre_node);
CNodePtr replace_input_cnode = replace_input->cast<CNodePtr>();
auto pre_node = node->input(IntToSize(replace_input.second));
manager->SetEdge(replace_input.first, 1, pre_node);
auto replace_input_cnode = replace_input.first->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(replace_input_cnode);
(void)replace_input_cnode->set_operator_info(node->operator_info());
replace_input_cnode->set_in_forward_flag(true); // mark this new cnode is forward node
@ -943,6 +932,20 @@ OperatorInfoPtr OperatorInstanceByName(const std::string &name, const PrimitiveA
MS_LOG(EXCEPTION) << "Length of name is zero!";
}
std::string distribute_opname = GetDisOpName(name);
if (name == GATHERV2) {
distribute_opname = name + "PInfo";
auto data_parallel_iter = attrs.find(DATA_PARALLEL);
if (data_parallel_iter != attrs.end()) {
MS_EXCEPTION_IF_NULL(data_parallel_iter->second);
if (!data_parallel_iter->second->isa<BoolImm>()) {
MS_LOG(EXCEPTION) << ": data_parallel flag's type is not a bool.";
}
bool data_parallel = data_parallel_iter->second->cast<BoolImmPtr>()->value();
if (data_parallel) {
distribute_opname = name + "Info";
}
}
}
OperatorInfoPtr operator_ =
(OperatorInfoPtr)DynCreator::Instance().Creat(distribute_opname, shape_list[0], shape_list[1], attrs, TOTAL_OPS);
if (operator_ == nullptr) {

View File

@ -0,0 +1,173 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
from tests.ut.python.ops.test_math_ops import VirtualLoss
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y):
predict = self.network(x, y)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
class Net(nn.Cell):
def __init__(self, axis=0, strategy1=None, strategy2=None, shape=[64, 64]):
super().__init__()
self.gatherv2 = P.GatherV2().set_strategy(strategy1)
self.mul = P.Mul().set_strategy(strategy2)
self.index = Tensor(np.ones(shape), dtype=ms.int32)
self.axis = axis
def construct(self, x, y):
out = self.gatherv2(x, self.index, self.axis)
out = self.mul(out, y)
return out
def test_gatherv2_semi_auto0():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((1, 8), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto1():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto2():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 4), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto3():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((1, 8), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto4():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto5():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((2, 4), )
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto6():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(0, None, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto7():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy2 = ((4, 2, 1), (4, 2, 1))
net = GradWrap(NetWithLoss(Net(1, None, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_semi_auto8():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
strategy1 = ((8, ), )
strategy2 = ((4, 2), (4, 2))
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
net.set_auto_parallel()
x = Tensor(np.ones([64]), dtype=ms.float32)
y = Tensor(np.ones([64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_auto0():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(Net(0)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
_executor.compile(net, x, y)
def test_gatherv2_auto1():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(Net(1)))
net.set_auto_parallel()
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
_executor.compile(net, x, y)

View File

@ -74,7 +74,7 @@ class GatherV2(_Loss):
emb2_list = np.reshape(emb_list[1::2], (int(index_size/2), 16))
self.emb1_param = Tensor(emb1_list, dtype=mstype.int32)
self.emb2_param = Tensor(emb2_list, dtype=mstype.int32)
self.gatherv2 = P.GatherV2().set_strategy(strategy)
self.gatherv2 = P.GatherV2().set_strategy(strategy).add_prim_attr("data_parallel", True)
def construct(self, nembeddings):
emb1 = self.gatherv2(nembeddings, self.emb1_param, 0)