!228 [MD] add subset random sampler in minddataset

Merge pull request !228 from liyong126/mindrecord_subsetrandom_sampler
This commit is contained in:
mindspore-ci-bot 2020-04-12 08:40:48 +08:00 committed by Gitee
commit d949c17a7e
7 changed files with 336 additions and 33 deletions

View File

@ -391,6 +391,30 @@ Status DEPipeline::CheckMindRecordPartitionInfo(const py::dict &args, std::vecto
return Status::OK();
}
Status DEPipeline::GetMindrecordSampler(const std::string &sampler_name, const py::dict &args,
std::shared_ptr<mindrecord::ShardOperator> *ptr) {
std::vector<int> indices;
for (auto &arg : args) {
std::string key = py::str(arg.first);
py::handle value = arg.second;
if (!value.is_none()) {
if (key == "indices") {
indices = ToIntVector(value);
} else {
std::string err_msg = "ERROR: parameter " + key + " is invalid.";
RETURN_STATUS_UNEXPECTED(err_msg);
}
}
}
if (sampler_name == "SubsetRandomSampler") {
*ptr = std::make_shared<mindrecord::ShardSample>(indices);
} else {
std::string err_msg = "ERROR: parameter sampler_name is invalid.";
RETURN_STATUS_UNEXPECTED(err_msg);
}
return Status::OK();
}
Status DEPipeline::ParseMindRecordOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr) {
if (args["dataset_file"].is_none()) {
std::string err_msg = "Error: at least one of dataset_files is missing";
@ -422,6 +446,13 @@ Status DEPipeline::ParseMindRecordOp(const py::dict &args, std::shared_ptr<Datas
} else if (key == "global_shuffle" && ToBool(value) == true) {
uint32_t seed = args["partitions"].is_none() ? GetSeed() : 0;
operators.push_back(std::make_shared<mindrecord::ShardShuffle>(seed));
} else if (key == "sampler_name") {
std::shared_ptr<mindrecord::ShardOperator> sample_op;
auto ret = GetMindrecordSampler(ToString(value), args["sampler_params"], &sample_op);
if (Status::OK() != ret) {
return ret;
}
operators.push_back(sample_op);
}
}
}

View File

@ -145,6 +145,9 @@ class DEPipeline {
Status ParseCelebAOp(const py::dict &args, std::shared_ptr<DatasetOp> *ptr);
Status GetMindrecordSampler(const std::string &sampler_name, const py::dict &args,
std::shared_ptr<mindrecord::ShardOperator> *ptr);
private:
// Execution tree that links the dataset operators.
std::shared_ptr<ExecutionTree> tree_;

View File

@ -68,6 +68,8 @@ enum ShardType {
kCV = 1,
};
enum SamplerType { kCustomTopNSampler, kCustomTopPercentSampler, kSubsetRandomSampler, kPKSampler };
const double kEpsilon = 1e-7;
const int kThreadNumber = 14;

View File

@ -17,7 +17,9 @@
#ifndef MINDRECORD_INCLUDE_SHARD_SAMPLE_H_
#define MINDRECORD_INCLUDE_SHARD_SAMPLE_H_
#include <string>
#include <utility>
#include <vector>
#include "mindrecord/include/shard_operator.h"
namespace mindspore {
@ -30,6 +32,8 @@ class ShardSample : public ShardOperator {
ShardSample(int num, int den, int par);
explicit ShardSample(const std::vector<int> &indices);
~ShardSample() override{};
const std::pair<int, int> get_partitions() const;
@ -41,6 +45,8 @@ class ShardSample : public ShardOperator {
int denominator_;
int no_of_samples_;
int partition_id_;
std::vector<int> indices_;
SamplerType sampler_type_;
};
} // namespace mindrecord
} // namespace mindspore

View File

@ -22,33 +22,37 @@ using mindspore::MsLogLevel::ERROR;
namespace mindspore {
namespace mindrecord {
ShardSample::ShardSample(int n) {
numerator_ = 0;
denominator_ = 0;
no_of_samples_ = n;
partition_id_ = 0;
}
ShardSample::ShardSample(int n)
: numerator_(0),
denominator_(0),
no_of_samples_(n),
partition_id_(0),
indices_({}),
sampler_type_(kCustomTopNSampler) {}
ShardSample::ShardSample(int num, int den) {
if (num < 0 || den <= 0 || num > den) {
no_of_samples_ = 5;
numerator_ = 0;
denominator_ = 0;
partition_id_ = 0;
return;
}
numerator_ = num;
denominator_ = den;
no_of_samples_ = 0;
partition_id_ = 0;
}
ShardSample::ShardSample(int num, int den)
: numerator_(num),
denominator_(den),
no_of_samples_(0),
partition_id_(0),
indices_({}),
sampler_type_(kCustomTopPercentSampler) {}
ShardSample::ShardSample(int num, int den, int par) {
numerator_ = num;
denominator_ = den;
no_of_samples_ = 0;
partition_id_ = par;
}
ShardSample::ShardSample(int num, int den, int par)
: numerator_(num),
denominator_(den),
no_of_samples_(0),
partition_id_(par),
indices_({}),
sampler_type_(kCustomTopPercentSampler) {}
ShardSample::ShardSample(const std::vector<int> &indices)
: numerator_(0),
denominator_(0),
no_of_samples_(0),
partition_id_(0),
indices_(indices),
sampler_type_(kSubsetRandomSampler) {}
const std::pair<int, int> ShardSample::get_partitions() const {
if (numerator_ == 1 && denominator_ > 1) {
@ -62,10 +66,15 @@ MSRStatus ShardSample::operator()(ShardTask &tasks) {
int total_no = static_cast<int>(tasks.Size());
int taking = 0;
if (no_of_samples_ > 0) { // non sharding case constructor #1
if (sampler_type_ == kCustomTopNSampler) { // non sharding case constructor #1
no_of_samples_ = std::min(no_of_samples_, total_no);
taking = no_of_samples_ - no_of_samples_ % no_of_categories;
} else { // constructor #2 & #3
} else if (sampler_type_ == kSubsetRandomSampler) {
if (indices_.size() > total_no) {
MS_LOG(ERROR) << "parameter indices's size is greater than dataset size.";
return FAILED;
}
} else { // constructor TopPercent
if (numerator_ > 0 && denominator_ > 0 && numerator_ <= denominator_) {
if (numerator_ == 1 && denominator_ > 1) { // sharding
taking = (total_no / denominator_) + (total_no % denominator_ == 0 ? 0 : 1);
@ -82,8 +91,15 @@ MSRStatus ShardSample::operator()(ShardTask &tasks) {
if (tasks.permutation_.empty()) {
ShardTask new_tasks;
total_no = static_cast<int>(tasks.Size());
for (int i = partition_id_ * taking; i < (partition_id_ + 1) * taking; i++) {
new_tasks.InsertTask(tasks.get_task_by_id(i % total_no)); // rounding up. if overflow, go back to start
if (sampler_type_ == kSubsetRandomSampler) {
for (int i = 0; i < indices_.size(); ++i) {
int index = ((indices_[i] % total_no) + total_no) % total_no;
new_tasks.InsertTask(tasks.get_task_by_id(index)); // different mod result between c and python
}
} else {
for (int i = partition_id_ * taking; i < (partition_id_ + 1) * taking; i++) {
new_tasks.InsertTask(tasks.get_task_by_id(i % total_no)); // rounding up. if overflow, go back to start
}
}
std::swap(tasks, new_tasks);
} else {

View File

@ -1363,7 +1363,6 @@ def _select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id):
return samplers.SequentialSampler()
class ImageFolderDatasetV2(SourceDataset):
"""
A source dataset that reads images from a tree of directories.
@ -1621,6 +1620,9 @@ class MindDataset(SourceDataset):
shard_id (int, optional): The shard ID within num_shards (default=None). This
argument should be specified only when num_shards is also specified.
block_reader (bool, optional): Whether read data by block mode (default=False).
sampler (Sampler, optional): Object used to choose samples from the
dataset (default=None, sampler is exclusive
with shuffle and block_reader). Support list: SubsetRandomSampler.
Raises:
ValueError: If num_shards is specified but shard_id is None.
@ -1630,14 +1632,16 @@ class MindDataset(SourceDataset):
@check_minddataset
def __init__(self, dataset_file, columns_list=None, num_parallel_workers=None,
shuffle=None, num_shards=None, shard_id=None, block_reader=False):
shuffle=None, num_shards=None, shard_id=None,
block_reader=False, sampler=None):
super().__init__(num_parallel_workers)
self.dataset_file = dataset_file
self.columns_list = columns_list
self.global_shuffle = not bool(shuffle is False)
self.global_shuffle = shuffle
self.distribution = ""
self.sampler = sampler
if num_shards is None:
if num_shards is None or shard_id is None:
self.partitions = None
else:
self.partitions = [num_shards, shard_id]
@ -1645,9 +1649,25 @@ class MindDataset(SourceDataset):
if block_reader is True and self.partitions is not None:
raise ValueError("block reader not allowed true when use partitions")
if block_reader is True and shuffle is True:
raise ValueError("block reader not allowed true when use shuffle")
if block_reader is True:
logger.warning("WARN: global shuffle is not used.")
if sampler is not None and isinstance(sampler, samplers.SubsetRandomSampler) is False:
raise ValueError("the sampler is not supported yet.")
# sampler exclusive
if block_reader is True and sampler is not None:
raise ValueError("block reader not allowed true when use sampler")
if shuffle is True and sampler is not None:
raise ValueError("shuffle not allowed true when use sampler")
if block_reader is False and sampler is None:
self.global_shuffle = not bool(shuffle is False)
self.num_shards = num_shards
self.shard_id = shard_id
self.block_reader = block_reader
@ -1661,6 +1681,9 @@ class MindDataset(SourceDataset):
args["block_reader"] = self.block_reader
args["num_shards"] = self.num_shards
args["shard_id"] = self.shard_id
if self.sampler:
args["sampler_name"] = self.sampler.__class__.__name__
args["sampler_params"] = self.sampler.__dict__
return args
def get_dataset_size(self):

View File

@ -0,0 +1,222 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This is the test module for mindrecord
"""
import collections
import json
import os
import re
import string
import mindspore.dataset.transforms.vision.c_transforms as vision
import numpy as np
import pytest
from mindspore.dataset.transforms.vision import Inter
from mindspore import log as logger
import mindspore.dataset as ds
from mindspore.mindrecord import FileWriter
FILES_NUM = 4
CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
@pytest.fixture
def add_and_remove_cv_file():
"""add/remove cv file"""
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
for x in range(FILES_NUM)]
for x in paths:
if os.path.exists("{}".format(x)):
os.remove("{}".format(x))
if os.path.exists("{}.db".format(x)):
os.remove("{}.db".format(x))
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
data = get_data(CV_DIR_NAME)
cv_schema_json = {"id": {"type": "int32"},
"file_name": {"type": "string"},
"label": {"type": "int32"},
"data": {"type": "bytes"}}
writer.add_schema(cv_schema_json, "img_schema")
writer.add_index(["file_name", "label"])
writer.write_raw_data(data)
writer.commit()
yield "yield_cv_data"
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 3, 5, 7]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
data = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert data[indices[num_iter]]['file_name'] == "".join(
[chr(x) for x in item['file_name']])
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 2, 5, 7, 9]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
data = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert data[indices[num_iter]]['file_name'] == "".join(
[chr(x) for x in item['file_name']])
num_iter += 1
assert num_iter == 6
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = []
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
data = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert data[indices[num_iter]]['file_name'] == "".join(
[chr(x) for x in item['file_name']])
num_iter += 1
assert num_iter == 0
def test_cv_minddataset_subset_random_sample_out_range(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, 11, 13]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
data = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert data[indices[num_iter] % len(data)]['file_name'] == "".join([
chr(x) for x in item['file_name']])
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, -1, -2]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
data = get_data(CV_DIR_NAME)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator():
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert data[indices[num_iter] % len(data)]['file_name'] == "".join([
chr(x) for x in item['file_name']])
num_iter += 1
assert num_iter == 5
def get_data(dir_name):
"""
usage: get data from imagenet dataset
params:
dir_name: directory containing folder images and annotation information
"""
if not os.path.isdir(dir_name):
raise IOError("Directory {} not exists".format(dir_name))
img_dir = os.path.join(dir_name, "images")
ann_file = os.path.join(dir_name, "annotation.txt")
with open(ann_file, "r") as file_reader:
lines = file_reader.readlines()
data_list = []
for i, line in enumerate(lines):
try:
filename, label = line.split(",")
label = label.strip("\n")
with open(os.path.join(img_dir, filename), "rb") as file_reader:
img = file_reader.read()
data_json = {"id": i,
"file_name": filename,
"data": img,
"label": int(label)}
data_list.append(data_json)
except FileNotFoundError:
continue
return data_list