forked from mindspore-Ecosystem/mindspore
!2549 add wide&deep stanalone training script for gpu in model zoo
Merge pull request !2549 from zyli2020/add_model_script_of_wide_deep_for_gpu
This commit is contained in:
commit
cf0eca5608
|
@ -37,6 +37,7 @@ To train and evaluate the model, command as follows:
|
|||
python train_and_eval.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
|
@ -57,6 +58,7 @@ To train the model in one device, command as follows:
|
|||
python train.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
|
@ -87,6 +89,7 @@ To evaluate the model, command as follows:
|
|||
python eval.py
|
||||
```
|
||||
Arguments:
|
||||
* `--device_target`: Device where the code will be implemented (Default: Ascend).
|
||||
* `--data_path`: This should be set to the same directory given to the data_download's data_dir argument.
|
||||
* `--epochs`: Total train epochs.
|
||||
* `--batch_size`: Training batch size.
|
||||
|
|
|
@ -26,11 +26,11 @@ from src.datasets import create_dataset
|
|||
from src.metrics import AUCMetric
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci",
|
||||
save_graphs=True)
|
||||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
|
@ -91,4 +91,5 @@ if __name__ == "__main__":
|
|||
widedeep_config = WideDeepConfig()
|
||||
widedeep_config.argparse_init()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=widedeep_config.device_target)
|
||||
test_eval(widedeep_config)
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
# bash run_multigpu_train.sh
|
||||
# bash run_multigpu_train.sh RANK_SIZE EPOCH_SIZE DATASET
|
||||
script_self=$(readlink -f "$0")
|
||||
self_path=$(dirname "${script_self}")
|
||||
RANK_SIZE=$1
|
||||
|
@ -25,4 +25,5 @@ mpirun --allow-run-as-root -n $RANK_SIZE \
|
|||
python -s ${self_path}/../train_and_eval_distribute.py \
|
||||
--device_target="GPU" \
|
||||
--data_path=$DATASET \
|
||||
--batch_size=8000 \
|
||||
--epochs=$EPOCH_SIZE > log.txt 2>&1 &
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
# bash run_standalone_train_for_gpu.sh EPOCH_SIZE DATASET
|
||||
script_self=$(readlink -f "$0")
|
||||
self_path=$(dirname "${script_self}")
|
||||
EPOCH_SIZE=$1
|
||||
DATASET=$2
|
||||
|
||||
python -s ${self_path}/../train_and_eval.py \
|
||||
--device_target="GPU" \
|
||||
--data_path=$DATASET \
|
||||
--batch_size=16000 \
|
||||
--epochs=$EPOCH_SIZE > log.txt 2>&1 &
|
|
@ -15,16 +15,16 @@
|
|||
import os
|
||||
from mindspore import Model, context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
||||
|
||||
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||
from src.callbacks import LossCallBack
|
||||
from src.datasets import create_dataset
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
|
||||
|
||||
def get_WideDeep_net(configure):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(configure)
|
||||
|
||||
loss_net = NetWithLossClass(WideDeep_net, configure)
|
||||
|
@ -72,7 +72,7 @@ def test_train(configure):
|
|||
|
||||
model = Model(train_net)
|
||||
callback = LossCallBack(config=configure)
|
||||
ckptconfig = CheckpointConfig(save_checkpoint_steps=1,
|
||||
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
|
||||
keep_checkpoint_max=5)
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=configure.ckpt_path, config=ckptconfig)
|
||||
model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), callback, ckpoint_cb])
|
||||
|
@ -82,4 +82,5 @@ if __name__ == "__main__":
|
|||
config = WideDeepConfig()
|
||||
config.argparse_init()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
|
||||
test_train(config)
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
import os
|
||||
|
||||
from mindspore import Model, context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
||||
|
||||
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||
from src.callbacks import LossCallBack, EvalCallBack
|
||||
|
@ -23,10 +23,11 @@ from src.datasets import create_dataset
|
|||
from src.metrics import AUCMetric
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci")
|
||||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
|
@ -87,11 +88,13 @@ def test_train_eval(config):
|
|||
|
||||
out = model.eval(ds_eval)
|
||||
print("=====" * 5 + "model.eval() initialized: {}".format(out))
|
||||
model.train(epochs, ds_train, callbacks=[eval_callback, callback, ckpoint_cb])
|
||||
model.train(epochs, ds_train,
|
||||
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
wide_deep_config = WideDeepConfig()
|
||||
wide_deep_config.argparse_init()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=wide_deep_config.device_target)
|
||||
test_train_eval(wide_deep_config)
|
||||
|
|
|
@ -40,6 +40,9 @@ init()
|
|||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
loss_net = VirtualDatasetCellTriple(loss_net)
|
||||
|
|
|
@ -33,6 +33,9 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
train_net = TrainStepWrap(loss_net)
|
||||
|
@ -90,8 +93,12 @@ def train_and_eval(config):
|
|||
|
||||
callback = LossCallBack(config=config)
|
||||
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
|
||||
directory=config.ckpt_path, config=ckptconfig)
|
||||
if config.device_target == "Ascend":
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
|
||||
directory=config.ckpt_path, config=ckptconfig)
|
||||
elif config.device_target == "GPU":
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train_' + str(get_rank()),
|
||||
directory=config.ckpt_path, config=ckptconfig)
|
||||
out = model.eval(ds_eval)
|
||||
print("=====" * 5 + "model.eval() initialized: {}".format(out))
|
||||
model.train(epochs, ds_train,
|
||||
|
|
Loading…
Reference in New Issue