forked from mindspore-Ecosystem/mindspore
!25885 Modify tensor api
Merge pull request !25885 from liuyang/code_docs_np
This commit is contained in:
commit
c24fdec51a
|
@ -58,22 +58,50 @@ class Tensor(Tensor_):
|
|||
>>> import mindspore as ms
|
||||
>>> from mindspore import Tensor
|
||||
>>> from mindspore.common.initializer import One
|
||||
>>> # initialize a tensor with input data
|
||||
>>> # initialize a tensor with numpy.ndarray
|
||||
>>> t1 = Tensor(np.zeros([1, 2, 3]), ms.float32)
|
||||
>>> assert isinstance(t1, Tensor)
|
||||
>>> assert t1.shape == (1, 2, 3)
|
||||
>>> assert t1.dtype == ms.float32
|
||||
>>> print(t1)
|
||||
[[[0. 0. 0.]
|
||||
[0. 0. 0.]]]
|
||||
>>> print(type(t1))
|
||||
<class 'mindspore.common.tensor.Tensor'>
|
||||
>>> print(t1.shape)
|
||||
(1, 2, 3)
|
||||
>>> print(t1.dtype)
|
||||
Float32
|
||||
>>>
|
||||
>>> # initialize a tensor with a float scalar
|
||||
>>> t2 = Tensor(0.1)
|
||||
>>> assert isinstance(t2, Tensor)
|
||||
>>> assert t2.dtype == ms.float64
|
||||
>>> print(t2)
|
||||
0.1
|
||||
>>> print(type(t2))
|
||||
<class 'mindspore.common.tensor.Tensor'>
|
||||
>>> print(t2.shape)
|
||||
()
|
||||
>>> print(t2.dtype)
|
||||
Float64
|
||||
>>>
|
||||
>>> # initialize a tensor with a tuple
|
||||
>>> t3 = Tensor((1, 2))
|
||||
>>> print(t3)
|
||||
[1 2]
|
||||
>>> print(type(t3))
|
||||
<class 'mindspore.common.tensor.Tensor'>
|
||||
>>> print(t3.shape)
|
||||
(2,)
|
||||
>>> print(t3.dtype)
|
||||
Int64
|
||||
...
|
||||
>>> # initialize a tensor with init
|
||||
>>> t3 = Tensor(shape = (1, 3), dtype=ms.float32, init=One())
|
||||
>>> assert isinstance(t3, Tensor)
|
||||
>>> assert t3.shape == (1, 3)
|
||||
>>> assert t3.dtype == ms.float32
|
||||
>>> t4 = Tensor(shape = (1, 3), dtype=ms.float32, init=One())
|
||||
>>> print(t4)
|
||||
[[1. 1. 1.]]
|
||||
>>> print(type(t4))
|
||||
<class 'mindspore.common.tensor.Tensor'>
|
||||
>>> print(t4.shape)
|
||||
(1, 3)
|
||||
>>> print(t4.dtype)
|
||||
Float32
|
||||
"""
|
||||
|
||||
def __init__(self, input_data=None, dtype=None, shape=None, init=None):
|
||||
|
@ -305,7 +333,7 @@ class Tensor(Tensor_):
|
|||
|
||||
@property
|
||||
def has_init(self):
|
||||
"""tensor is inited."""
|
||||
"""Whether tensor is initialized."""
|
||||
return self.init is not None
|
||||
|
||||
@property
|
||||
|
@ -368,7 +396,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def item(self, index=None):
|
||||
"""
|
||||
Get item from the Tensor with the index.
|
||||
Get the item at the specified index of the tensor.
|
||||
|
||||
Note:
|
||||
Tensor.item returns a Tensor scalar instead of a Python scalar.
|
||||
|
@ -413,7 +441,7 @@ class Tensor(Tensor_):
|
|||
It is either an int or a tuple.
|
||||
|
||||
Returns:
|
||||
A new Tensor, with value set by :math:`tensor[args] = item`.
|
||||
A new tensor that doesn't affect the original tensor, with value set by :math:`tensor[args] = item`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the length of the first argument is not equal to self.ndim.
|
||||
|
@ -426,41 +454,57 @@ class Tensor(Tensor_):
|
|||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> x = Tensor(np.array([[1,2,3],[4,5,6]], dtype=np.float32))
|
||||
>>> x = x.itemset((0,1), 4)
|
||||
>>> print(x)
|
||||
>>> print(itemset((0,1), 4))
|
||||
[[1. 4. 3.]
|
||||
[4. 5. 6.]]
|
||||
>>> print(x)
|
||||
[[1. 2. 3.]
|
||||
[4. 5. 6.]]
|
||||
"""
|
||||
output = tensor_operator_registry.get('itemset')(self, *args)
|
||||
return output
|
||||
|
||||
def asnumpy(self):
|
||||
"""
|
||||
Convert tensor to numpy array.
|
||||
Convert tensor to numpy array. Returns self tensor as a NumPy ndarray. This tensor and the returned ndarray
|
||||
share the same underlying storage. Changes to self tensor will be reflected in the ndarray.
|
||||
|
||||
Returns:
|
||||
numpy.array.
|
||||
A numpy ndarray which shares the same underlying storage with the tensor.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> from mindspore import dtype as mstype
|
||||
>>> x = Tensor([1, 2, 3], dtype=mstype.float32)
|
||||
>>> output = x.asnumpy()
|
||||
>>> print(output)
|
||||
[1. 2. 3.]
|
||||
>>> import numpy as np
|
||||
>>> x = Tensor(np.array([1, 2], dtype=np.float32))
|
||||
>>> y = x.asnumpy()
|
||||
>>> x[0] = 100
|
||||
>>> print(x)
|
||||
[11. 2.]
|
||||
>>> print(y)
|
||||
[11. 2.]
|
||||
"""
|
||||
self._init_check()
|
||||
PynativeExecutor_.get_instance().execute_all_task()
|
||||
return Tensor_.asnumpy(self)
|
||||
|
||||
def flush_from_cache(self):
|
||||
"""Flush cache data to host if tensor is cache enable."""
|
||||
"""
|
||||
Flush cache data to host if tensor is cache enable.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> import numpy as np
|
||||
>>> x = Tensor(np.array([1, 2], dtype=np.float32))
|
||||
>>> y = x.flush_from_cache()
|
||||
>>> print(y)
|
||||
None
|
||||
"""
|
||||
self._init_check()
|
||||
Tensor_._flush_from_cache(self)
|
||||
|
||||
def all(self, axis=(), keep_dims=False):
|
||||
"""
|
||||
Check all array elements along a given axis evaluate to True.
|
||||
Check all tensor elements along a given axis evaluate to True.
|
||||
|
||||
Args:
|
||||
axis (Union[None, int, tuple(int)): Dimensions of reduction,
|
||||
|
@ -468,12 +512,15 @@ class Tensor(Tensor_):
|
|||
keep_dims (bool): Whether to keep the reduced dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, if all array elements along the given axis evaluate to True, its value is True,
|
||||
Tensor, if all tensor elements along the given axis evaluate to True, its value is True,
|
||||
otherwise its value is False. If the axis is None or empty tuple, reduce all dimensions.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.any`: Check any tensor element along a given axis evaluate to True.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> a = Tensor([True, True, False])
|
||||
|
@ -489,7 +536,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def any(self, axis=(), keep_dims=False):
|
||||
"""
|
||||
Check any array element along a given axis evaluate to True.
|
||||
Check any tensor element along a given axis evaluate to True.
|
||||
|
||||
Args:
|
||||
axis (Union[None, int, tuple(int)): Dimensions of reduction,
|
||||
|
@ -497,12 +544,15 @@ class Tensor(Tensor_):
|
|||
keep_dims (bool): Whether to keep the reduced dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, if any array element along the given axis evaluates to True, its value is True,
|
||||
Tensor, if any tensor element along the given axis evaluates to True, its value is True,
|
||||
otherwise its value is False. If the axis is None or empty tuple, reduce all dimensions.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.all`: Check all tensor elements along a given axis evaluate to True.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> a = Tensor([True, True, False])
|
||||
|
@ -525,6 +575,16 @@ class Tensor(Tensor_):
|
|||
|
||||
Returns:
|
||||
Tensor, has the same dimension as the input shape.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> import numpy as np
|
||||
>>> a = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32))
|
||||
>>> output = a.view((3, 2))
|
||||
>>> print(output)
|
||||
[[1. 2.]
|
||||
[3. 2.]
|
||||
[3. 4.]]
|
||||
"""
|
||||
self._init_check()
|
||||
if not shape:
|
||||
|
@ -595,6 +655,11 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.std`: Compute the standard deviation along the specified axis.
|
||||
|
||||
:func:`mindspore.Tensor.var`: Compute the variance along the specified axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -655,14 +720,14 @@ class Tensor(Tensor_):
|
|||
Args:
|
||||
shape(Union[int, tuple(int), list(int)]): The new shape should be compatible
|
||||
with the original shape. If an integer, then the result will be a 1-D
|
||||
array of that length. One shape dimension can be -1. In this case, the
|
||||
value is inferred from the length of the array and remaining dimensions.
|
||||
tensor of that length. One shape dimension can be -1. In this case, the
|
||||
value is inferred from the length of the tensor and remaining dimensions.
|
||||
|
||||
Returns:
|
||||
Tensor, with new specified shape.
|
||||
|
||||
Raises:
|
||||
TypeError: If new_shape is not integer, list or tuple, or `x` is not tensor.
|
||||
TypeError: If new_shape is not integer, list or tuple.
|
||||
ValueError: If new_shape is not compatible with the original shape.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -692,6 +757,11 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
|
||||
|
||||
:func:`mindspore.Tensor.flatten`: Return a copy of the tensor collapsed into one dimension.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -711,7 +781,7 @@ class Tensor(Tensor_):
|
|||
Args:
|
||||
order (str, optional): Can choose between 'C' and 'F'. 'C' means to
|
||||
flatten in row-major (C-style) order. 'F' means to flatten in column-major
|
||||
(Fortran-style) order. Only 'C' and 'F' are supported. Default: 'C'.
|
||||
(Fortran-style) order. Default: 'C'.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same data type as input.
|
||||
|
@ -723,6 +793,11 @@ class Tensor(Tensor_):
|
|||
TypeError: If `order` is not string type.
|
||||
ValueError: If `order` is string type, but not 'C' or 'F'.
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
|
||||
|
||||
:func:`mindspore.Tensor.ravel`: Return a contiguous flattened tensor.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -805,13 +880,38 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.expand_as`: Expand the dimension of target tensor to the dimension of input tensor.
|
||||
|
||||
:func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> x = Tensor(np.ones((1,2,2,1), dtype=np.float32))
|
||||
>>> x = x.squeeze()
|
||||
>>> print(x)
|
||||
[[[[1.]
|
||||
[1.]]
|
||||
|
||||
[[1.]
|
||||
[1.]]]]
|
||||
>>> print(x.shape)
|
||||
(1, 2, 2, 1)
|
||||
>>> y = x.squeeze()
|
||||
>>> print(y)
|
||||
[[1. 1.]
|
||||
[1. 1.]]
|
||||
>>> print(y.shape)
|
||||
(2, 2)
|
||||
>>> y = x.squeeze(axis=0)
|
||||
>>> print(y)
|
||||
[[[1.]
|
||||
[1.]]
|
||||
|
||||
[[1.]
|
||||
[1.]]]
|
||||
>>> print(y.shape)
|
||||
(2, 2, 1)
|
||||
"""
|
||||
self._init_check()
|
||||
if axis is None:
|
||||
|
@ -826,16 +926,15 @@ class Tensor(Tensor_):
|
|||
Args:
|
||||
dtype (Union[:class:`mindspore.dtype`, str]): Designated tensor dtype, can be in format
|
||||
of :class:`mindspore.dtype.float32` or `float32`.
|
||||
Default: :class:`mindspore.dtype.float32`.
|
||||
copy (bool, optional): By default, astype always returns a newly allocated
|
||||
tensor. If this is set to false, the input tensor is returned instead
|
||||
of a copy if possible. Default: True.
|
||||
of a copy. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated dtype.
|
||||
|
||||
Raises:
|
||||
TypeError: If `dtype` has types not specified above, or values cannot be understood.
|
||||
TypeError: If the specified dtype cannot be understood.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -867,11 +966,18 @@ class Tensor(Tensor_):
|
|||
shape as self.shape with the dimension along axis removed.
|
||||
|
||||
Raises:
|
||||
ValueError: if the axis is out of range.
|
||||
ValueError: If the axis is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.min`: Return the minimum of a tensor or minimum along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.max`: Return the maximum of a tensor or maximum along an axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -901,11 +1007,18 @@ class Tensor(Tensor_):
|
|||
shape as self.shape with the dimension along axis removed.
|
||||
|
||||
Raises:
|
||||
ValueError: if the axis is out of range.
|
||||
ValueError: If the axis is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.min`: Return the minimum of a tensor or minimum along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.max`: Return the maximum of a tensor or maximum along an axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -934,12 +1047,12 @@ class Tensor(Tensor_):
|
|||
Args:
|
||||
axis (int, optional): Axis along which the cumulative sum is computed. The
|
||||
default (None) is to compute the cumsum over the flattened array.
|
||||
dtype (:class:`mindspore.dtype`, optional): If not specified, stay the same as original,
|
||||
dtype (:class:`mindspore.dtype`, optional): If not specified, stay the same as original
|
||||
tensor, unless it has an integer dtype with a precision less than :class:`float32`.
|
||||
In that case, :class:`float32` is used. Default: None.
|
||||
|
||||
Raises:
|
||||
ValueError: if the axis is out of range.
|
||||
ValueError: If the axis is out of range.
|
||||
|
||||
Returns:
|
||||
Tensor.
|
||||
|
@ -947,6 +1060,9 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.sum`: Return sum of tensor elements over a given axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1023,20 +1139,27 @@ class Tensor(Tensor_):
|
|||
The minimum value of an output element. Must be present to allow
|
||||
computation on empty slice. Default: None.
|
||||
where (bool Tensor, optional):
|
||||
A boolean array which is broadcasted to match the dimensions of array,
|
||||
A boolean tensor which is broadcasted to match the dimensions of array,
|
||||
and selects elements to include in the reduction. If non-default value
|
||||
is passed, initial must also be provided. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor or scalar, maximum of input tensor. If `axis` is None, the result is a scalar
|
||||
value. If `axis` is given, the result is an array of dimension ``self.ndim - 1``.
|
||||
value. If `axis` is given, the result is a tensor of dimension ``self.ndim - 1``.
|
||||
|
||||
Raises:
|
||||
TypeError: if arguments have types not specified above.
|
||||
TypeError: If arguments have types not specified above.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.min`: Return the minimum of a tensor or minimum along an axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1063,25 +1186,32 @@ class Tensor(Tensor_):
|
|||
keepdims (bool, optional):
|
||||
If this is set to True, the axes which are reduced are left in the
|
||||
result as dimensions with size one. With this option, the result will
|
||||
broadcast correctly against the input array. Default: False.
|
||||
broadcast correctly against the input tensor. Default: False.
|
||||
initial (scalar, optional):
|
||||
The maximum value of an output element. Must be present to allow
|
||||
computation on empty slice. Default: None.
|
||||
where (bool Tensor, optional):
|
||||
A boolean array which is broadcasted to match the dimensions of array,
|
||||
A boolean tensor which is broadcasted to match the dimensions of tensor,
|
||||
and selects elements to include in the reduction. If non-default value
|
||||
is passed, initial must also be provided. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor or scalar, minimum of input tensor. If the axis is None, the result is a scalar
|
||||
value. If `axis` is given, the result is an array of dimension ``self.ndim - 1``.
|
||||
value. If `axis` is given, the result is a tensor of dimension ``self.ndim - 1``.
|
||||
|
||||
Raises:
|
||||
TypeError: if arguments have types not specified above.
|
||||
TypeError: If arguments have types not specified above.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.argmin`: Return the indices of the minimum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.argmax`: Return the indices of the maximum values along an axis.
|
||||
|
||||
:func:`mindspore.Tensor.max`: Return the maximum of a tensor or maximum along an axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1099,10 +1229,10 @@ class Tensor(Tensor_):
|
|||
|
||||
def fill(self, value):
|
||||
"""
|
||||
Fill the array with a scalar value.
|
||||
Fill the tensor with a scalar value.
|
||||
|
||||
Note:
|
||||
Unlike Numpy, tensor.fill() will always returns a new tensor, instead of
|
||||
Unlike Numpy, tensor.fill() will always return a new tensor, instead of
|
||||
filling the original tensor.
|
||||
|
||||
Args:
|
||||
|
@ -1139,20 +1269,20 @@ class Tensor(Tensor_):
|
|||
The name of the function comes from the acronym for "peak to peak".
|
||||
|
||||
Note:
|
||||
Numpy arguments `dtype` and `out` are not supported.
|
||||
Numpy argument `out` is not supported.
|
||||
|
||||
Args:
|
||||
axis (Union[None, int, tuple(int)]): Axis or axes along which the range is computed.
|
||||
The default is to compute the variance of the flattened array. Default: None.
|
||||
The default is to compute the variance of the flattened tensor. Default: None.
|
||||
keepdims (bool): If this is set to True, the axes which are reduced are left in the result as
|
||||
dimensions with size one. With this option, the result will broadcast correctly against the array.
|
||||
dimensions with size one. With this option, the result will broadcast correctly against the tensor.
|
||||
Default is False.
|
||||
|
||||
Returns:
|
||||
Tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: if `self` is not a tensor, or `axis` and `keepdims` have types not specified above.
|
||||
TypeError: If `self` is not a tensor, or `axis` and `keepdims` have types not specified above.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1191,8 +1321,8 @@ class Tensor(Tensor_):
|
|||
on the lower interval edge. Not more than one of `xmin` and `xmax` may be None.
|
||||
xmax (Tensor, scalar, None): Maximum value. If None, clipping is not performed
|
||||
on the upper interval edge. Not more than one of `xmin` and `xmax` may be None.
|
||||
If `xmin` or `xmax` are tensors, then the three tensors will be broadcasted
|
||||
to match their shapes.
|
||||
If `xmin` or `xmax` are tensors, then `xmin`, `xmax` and the given tensor
|
||||
will be broadcasted to match their shapes.
|
||||
dtype (:class:`mindspore.dtype`, optional): Overrides the dtype of the
|
||||
output Tensor. Default is None.
|
||||
|
||||
|
@ -1210,9 +1340,13 @@ class Tensor(Tensor_):
|
|||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> x = Tensor([1, 2, 3, -4, 0, 3, 2, 0]).astype("float32")
|
||||
>>> output = x.clip(0, 2)
|
||||
>>> print(output)
|
||||
>>> y = x.clip(0, 2)
|
||||
>>> print(y)
|
||||
[1. 2. 2. 0. 0. 2. 2. 0.]
|
||||
>>> t = Tensor([1, 1, 1, 1, 1, 1, 1, 1])
|
||||
>>> y = x.clip(t, 2)
|
||||
>>> print(y)
|
||||
[1. 2. 2. 1. 1. 2. 2. 1.]
|
||||
"""
|
||||
if xmin is None and xmax is None:
|
||||
raise ValueError("One of max or min must be given.")
|
||||
|
@ -1348,15 +1482,19 @@ class Tensor(Tensor_):
|
|||
|
||||
def resize(self, *new_shape):
|
||||
"""
|
||||
Changes shape and size of array in-place.
|
||||
Changes shape and size of tensor in-place.
|
||||
|
||||
If the shape of the new tensor is larger than the shape of the original tensor, the new tensor will be filled
|
||||
with 0. And if the shape of the new tensor is smaller than the shape of the original tensor, the new tensor is
|
||||
filled with the elements of the original tensor in order.
|
||||
|
||||
Note:
|
||||
Instead of changing the size of the input array and returns nothing as in numpy,
|
||||
Instead of changing the size of the input tensor and returns nothing as in numpy,
|
||||
this method returns a new Tensor with the input size.
|
||||
Numpy argument `refcheck` is not supported.
|
||||
|
||||
Args:
|
||||
new_shape (Union[ints, tuple of ints]): Shape of resized array.
|
||||
new_shape (Union[ints, tuple of ints]): Shape of resized tensor.
|
||||
|
||||
Returns:
|
||||
Tensor.
|
||||
|
@ -1364,14 +1502,24 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
|
||||
|
||||
:func:`mindspore.Tensor.repeat`: Repeat elements of a tensor.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> x = Tensor(np.array([[0, 1], [2, 3]]))
|
||||
>>> x = x.resize(2, 3)
|
||||
>>> print(x)
|
||||
[[0 1 2]
|
||||
[3 0 0]]
|
||||
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
|
||||
>>> y = x.resize(3, 3)
|
||||
>>> print(y)
|
||||
[[1. 2. 3.]
|
||||
[4. 5. 6.]
|
||||
[0. 0. 0.]]
|
||||
>>> y = x.resize(2, 2)
|
||||
>>> print(y)
|
||||
[[1. 2.]
|
||||
[3. 4.]]
|
||||
"""
|
||||
if not new_shape:
|
||||
return self
|
||||
|
@ -1412,6 +1560,9 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.trace`: Return the sum along diagonals of the tensor.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1473,7 +1624,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def trace(self, offset=0, axis1=0, axis2=1, dtype=None):
|
||||
"""
|
||||
Return the sum along diagonals of the array.
|
||||
Return the sum along diagonals of the tensor.
|
||||
|
||||
Args:
|
||||
offset (int, optional): Offset of the diagonal from the main diagonal.
|
||||
|
@ -1488,14 +1639,17 @@ class Tensor(Tensor_):
|
|||
output Tensor.
|
||||
|
||||
Returns:
|
||||
Tensor, sum_along_diagonals.
|
||||
Tensor, the sum along diagonals.
|
||||
|
||||
Raises:
|
||||
ValueError: if the input tensor has less than two dimensions.
|
||||
ValueError: If the input tensor has less than two dimensions.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.diagonal`: Return specified diagonals.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1514,15 +1668,15 @@ class Tensor(Tensor_):
|
|||
|
||||
def take(self, indices, axis=None, mode='clip'):
|
||||
"""
|
||||
Takes elements from an array along an axis.
|
||||
Takes elements from a tensor along an axis.
|
||||
|
||||
Args:
|
||||
indices (Tensor): The indices with shape `(Nj...)` of the values to extract.
|
||||
axis (int, optional): The axis over which to select values. By default,
|
||||
the flattened input array is used. Default: `None`.
|
||||
the flattened input tensor is used. Default: `None`.
|
||||
mode ('raise', 'wrap', 'clip', optional):
|
||||
|
||||
- edge: Pads with the edge values of `arr`.
|
||||
- edge: Pads with the edge values of the tensor.
|
||||
- raise: Raises an error;
|
||||
- wrap: Wraps around;
|
||||
- clip: Clips to the range. 'clip' mode means that all indices that are
|
||||
|
@ -1579,12 +1733,12 @@ class Tensor(Tensor_):
|
|||
|
||||
def choose(self, choices, mode='clip'):
|
||||
"""
|
||||
Construct an array from an index array and a list of arrays to choose from.
|
||||
Construct a tensor from an index tensor and a list of tensors to choose from.
|
||||
|
||||
Args:
|
||||
choices (Union[tuple, list, Tensor]): Choice arrays. `a` and all of the `choices` must
|
||||
be broadcasted to the same shape. If `choices` is itself an array, then
|
||||
its outermost dimension (i.e., the one corresponding to ``choices.shape[0]``)
|
||||
choices (Union[tuple, list, Tensor]): Choice tensors. The input tensor and all of the
|
||||
`choices` must be broadcasted to the same shape. If `choices` is itself a tensor,
|
||||
then its outermost dimension (i.e., the one corresponding to ``choices.shape[0]``)
|
||||
is taken as defining the "sequence".
|
||||
mode ('raise', 'wrap', 'clip', optional): Specifies how indices outside
|
||||
``[0, n-1]`` will be treated:
|
||||
|
@ -1593,9 +1747,8 @@ class Tensor(Tensor_):
|
|||
|
||||
'wrap' – wrap around;
|
||||
|
||||
'clip' – clip to the range. 'clip' mode means that all indices that are
|
||||
too large are replaced by the index that addresses the last element
|
||||
along that axis. Note that this disables indexing with negative numbers.
|
||||
'clip' – clip to the range. 'clip' mode means that values greater than n-1 are mapped to n-1.
|
||||
Note that this disables indexing with negative numbers.
|
||||
|
||||
Returns:
|
||||
Tensor, the merged result.
|
||||
|
@ -1657,13 +1810,13 @@ class Tensor(Tensor_):
|
|||
Finds indices where elements should be inserted to maintain order.
|
||||
|
||||
Args:
|
||||
v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into `a`.
|
||||
v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into the tensor.
|
||||
side ('left', 'right', optional): If 'left', the index of the first suitable
|
||||
location found is given. If 'right', return the last such index. If there is
|
||||
no suitable index, return either 0 or N (where N is the length of `a`).
|
||||
no suitable index, return either 0 or N (where N is the length of the tensor).
|
||||
Default: 'left'.
|
||||
sorter (Union[int, float, bool, list, tuple, Tensor]): 1-D optional array of
|
||||
integer indices that sort array `a` into ascending order. They are typically
|
||||
sorter (Union[int, float, bool, list, tuple, Tensor]): 1-D optional tensor of
|
||||
integer indices that sort the tensor into ascending order. They are typically
|
||||
the result of argsort.
|
||||
|
||||
Returns:
|
||||
|
@ -1727,11 +1880,16 @@ class Tensor(Tensor_):
|
|||
The divisor used in calculations is :math:`N - ddof`, where :math:`N` represents the number of elements.
|
||||
keepdims (bool): Default: `False`.
|
||||
|
||||
Returns:
|
||||
Variance tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Returns:
|
||||
Standard deviation tensor.
|
||||
See also:
|
||||
:func:`mindspore.Tensor.mean`: Reduce a dimension of a tensor by averaging all elements in the dimension.
|
||||
|
||||
:func:`mindspore.Tensor.std`: Compute the standard deviation along the specified axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
|
@ -1767,6 +1925,7 @@ class Tensor(Tensor_):
|
|||
def std(self, axis=None, ddof=0, keepdims=False):
|
||||
"""
|
||||
Compute the standard deviation along the specified axis.
|
||||
|
||||
The standard deviation is the square root of the average of the squared deviations
|
||||
from the mean, i.e., :math:`std = sqrt(mean(abs(x - x.mean())**2))`.
|
||||
|
||||
|
@ -1791,6 +1950,11 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.mean`: Reduce a dimension of a tensor by averaging all elements in the dimension.
|
||||
|
||||
:func:`mindspore.Tensor.var`: Compute the variance along the specified axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1804,7 +1968,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def sum(self, axis=None, dtype=None, keepdims=False, initial=None):
|
||||
"""
|
||||
Return sum of array elements over a given axis.
|
||||
Return sum of tensor elements over a given axis.
|
||||
|
||||
Note:
|
||||
Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and
|
||||
|
@ -1812,7 +1976,7 @@ class Tensor(Tensor_):
|
|||
|
||||
Args:
|
||||
axis (Union[None, int, tuple(int)]): Axis or axes along which a sum is performed. Default: None.
|
||||
If None, sum all the elements of the input array.
|
||||
If None, sum all the elements of the input tensor.
|
||||
If the axis is negative, it counts from the last to the first axis.
|
||||
If the axis is a tuple of ints, a sum is performed on all the axes specified in the tuple
|
||||
instead of a single axis or all the axes as before.
|
||||
|
@ -1837,6 +2001,9 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.cumsum`: Return the cumulative sum of the elements along a given axis.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
@ -1870,7 +2037,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def repeat(self, repeats, axis=None):
|
||||
"""
|
||||
Repeat elements of an array.
|
||||
Repeat elements of a tensor.
|
||||
|
||||
Args:
|
||||
repeats (Union[int, tuple, list]): The number of repetitions for each element.
|
||||
|
@ -1888,6 +2055,11 @@ class Tensor(Tensor_):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
See also:
|
||||
:func:`mindspore.Tensor.reshape`: Give a new shape to a tensor without changing its data.
|
||||
|
||||
:func:`mindspore.Tensor.resize`: Changes shape and size of tensor in-place.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
|
|
Loading…
Reference in New Issue