!25649 Modify white list for master

Merge pull request !25649 from liuyang/master_white_list
This commit is contained in:
i-robot 2021-10-30 03:30:55 +00:00 committed by Gitee
commit b2378aed6e
2 changed files with 11 additions and 7 deletions

View File

@ -182,7 +182,9 @@ def pytype_to_dtype(obj):
obj = obj.type
if isinstance(obj, typing.Type):
return obj
if isinstance(obj, type) and obj in _simple_types:
if not isinstance(obj, type):
raise TypeError("The argument 'obj' must be a python type object, such as int, float, str, etc. But got type {}.".format(type(obj)))
elif obj in _simple_types:
return _simple_types[obj]
raise NotImplementedError(f"The python type {obj} cannot be converted to MindSpore type.")

View File

@ -168,7 +168,7 @@ def _calculate_correct_fan(shape, mode):
mode = mode.lower()
valid_modes = ['fan_in', 'fan_out']
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
raise ValueError("'mode' {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(shape)
return fan_in if mode == 'fan_in' else fan_out
@ -198,12 +198,13 @@ def _calculate_gain(nonlinearity, param=None):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} is not a valid number. "
"It should be bool, int, or float type.".format(param))
raise ValueError("'negative_slope' {} is not a valid number. When 'nonlinearity' has been set to "
"'leaky_relu', 'negative_slope' should be int or float type, but got "
"{}.".format(param, type(param)))
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
else:
raise ValueError("Unsupported nonlinearity {}, the argument 'nonlinearity' should be one of "
"'sigmoid', 'tanh', 'relu' or 'leaky_relu'.".format(nonlinearity))
raise ValueError("The argument 'nonlinearity' should be one of ['sigmoid', 'tanh', 'relu' or 'leaky_relu'], "
"but got {}.".format(nonlinearity))
return res
@ -219,7 +220,8 @@ def _calculate_in_and_out(arr):
"""
dim = len(arr.shape)
if dim < 2:
raise ValueError("If initialize data with xavier uniform, the dimension of data must be greater than 1.")
raise ValueError("If initialize data with xavier uniform, the dimension of data must be greater than 1, "
"but got {}.".format(dim))
n_in = arr.shape[1]
n_out = arr.shape[0]