gpu support Gelu & GeluGrad kernels

This commit is contained in:
wilfChen 2020-05-07 15:39:27 +08:00
parent d9dd6aa0b8
commit a304304c30
8 changed files with 441 additions and 0 deletions

View File

@ -0,0 +1,65 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/cuda_impl/gelu_impl.cuh"
#include "device/gpu/cuda_common.h"
template<typename T>
__global__ void GeluKernel(size_t size, T* input_addr, T* output_addr) {
// formula:
// gelu(x) = 0.5 * x * (1.0 + tanh(y))
// tanh(y) = 2 / (1 + exp(-2y)) - 1)
// y = sqrt(2/pi) * (x + 0.044715 * x^3)
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
float x = input_addr[pos];
float tanh_res = tanh(0.7978845608 * (x + 0.044715 * x * x * x));
output_addr[pos] = 0.5 * x * (1.0 + tanh_res);
}
}
template<typename T>
void Gelu(size_t size, T* input_addr, T* output_addr, cudaStream_t cuda_stream) {
GeluKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_addr, output_addr);
return;
}
template<typename T>
__global__ void GeluGradKernel(size_t size, T* dy_addr, T* x_addr, T* dx_addr) {
// formula:
// dx = dy * y'
// y' = 0.5 * (1 + tanh(tanh_para)) +
// 0.5 * x * (1 - tanh(tanh_para) * tanh(tanh_para)) * mul_right
// tanh_para = sqrt(2/pi) * (x + 0.044715 * x^3)
// mul_right = sqrt(2/pi) * (1 + 3 * 0.044715 * x^2))
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
T x = x_addr[pos];
T tanh_res = tanh(0.7978845608 * (x + 0.044715 * x * x * x));
T mul_right = 0.7978845608 + 0.1070322244 * x * x;
T y_res = 0.5 * (1 + tanh_res) + 0.5 * x * (1 - tanh_res * tanh_res) * mul_right;
dx_addr[pos] = dy_addr[pos] * y_res;
}
}
template<typename T>
void GeluGradKernel(size_t size, T* dy_addr, T* x_addr, T* dx_addr, cudaStream_t cuda_stream) {
GeluGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy_addr, x_addr, dx_addr);
}
template void Gelu(size_t size, float* input_addr, float* output_addr, cudaStream_t cuda_stream);
template void GeluGradKernel(size_t size, float* dy_addr, float* x_addr, float* dx_addr, cudaStream_t cuda_stream);

View File

@ -0,0 +1,27 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_GELU_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_GELU_H_
#include "device/gpu/cuda_common.h"
template<typename T>
void Gelu(size_t input_size, T* input_addr, T* output_addr, cudaStream_t cuda_stream);
template<typename T>
void GeluGradKernel(size_t size, T* dy_addr, T* x_addr, T* dx_addr, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_GELU_H_

View File

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/nn/gelu_grad_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(GeluGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
GeLUGpuGradKernel, float)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,75 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GRAD_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GRAD_KERNEL_H_
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/kernel_constants.h"
#include "kernel/gpu/cuda_impl/gelu_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class GeLUGpuGradKernel : public GpuKernel {
public:
GeLUGpuGradKernel() : input_size_(0) {}
~GeLUGpuGradKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
T *dy_addr = GetDeviceAddress<T>(inputs, 0);
T *x_addr = GetDeviceAddress<T>(inputs, 1);
T *dx_addr = GetDeviceAddress<T>(outputs, 0);
GeluGradKernel(input_size_ / sizeof(T), dy_addr, x_addr, dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
InitResource();
input_size_ = sizeof(T);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (auto dim : input_shape) {
input_size_ *= dim;
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(input_size_);
input_size_list_.push_back(input_size_);
output_size_list_.push_back(input_size_);
}
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
size_t input_size_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GRAD_KERNEL_H_

View File

@ -0,0 +1,24 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/nn/gelu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Gelu, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
GeluGpuKernel, float)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,72 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GPU_KERNEL_H_
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/kernel_constants.h"
#include "kernel/gpu/cuda_impl/gelu_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class GeluGpuKernel : public GpuKernel {
public:
GeluGpuKernel() : input_size_(0) {}
~GeluGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
T *input_addr = GetDeviceAddress<T>(inputs, 0);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
Gelu(input_size_ / sizeof(T), input_addr, output_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
InitResource();
input_size_ = sizeof(T);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (auto dim : input_shape) {
input_size_ *= dim;
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(input_size_);
}
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
size_t input_size_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_GELU_GPU_KERNEL_H_

View File

@ -0,0 +1,61 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import mindspore.context as context
from mindspore.ops import composite as C
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
def construct(self, x):
return self.gelu(x)
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network
def construct(self, input_data, sens):
gout = self.grad(self.network)(input_data, sens)
return gout
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelugrad():
x_ms = Tensor(np.array([0.58401114, 0.68800163, 0.9760397, 0.14702141, 0.46563736, 0.9607501,
0.14567593, 0.12261796, 0.37054458, 0.46421242]).astype(np.float32))
dy_ms = Tensor(np.array([0.5559598, 0.96994054, 0.24770357, 0.34646875, 0.2984393, 0.03287048,
0.55681044, 0.966908, 0.06015943, 0.6099489 ]).astype(np.float32))
net = GeluNet()
grad = Grad(net)
output = grad(x_ms, dy_ms)
print(output)
expect = [0.50963277, 0.9414753, 0.2667653, 0.21358444, 0.25243032, 0.0352667,
0.34266686, 0.57757664, 0.04707306, 0.51536125]
assert np.allclose(output[0].asnumpy(), expect)

View File

@ -0,0 +1,88 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class GeluNet(nn.Cell):
def __init__(self):
super(GeluNet, self).__init__()
self.gelu = P.Gelu()
def construct(self, x):
return self.gelu(x)
def GeluCompute(x):
return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x)))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_1d():
x_np = np.random.random((50,)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_2d():
x_np = np.random.random((50, 40)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_4d():
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32)
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gelu_neg():
x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1
y_np = GeluCompute(x_np)
x_ms = Tensor(x_np)
net = GeluNet()
y_ms = net(x_ms)
assert np.allclose(y_np, y_ms.asnumpy())