forked from mindspore-Ecosystem/mindspore
gpu add assigin
This commit is contained in:
parent
39b9e831cb
commit
9e372073e2
|
@ -0,0 +1,33 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/other/assign_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Assign,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
AssignGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Assign,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
AssignGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
Assign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
AssignGpuKernel, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,93 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class AssignGpuKernel : public GpuKernel {
|
||||
public:
|
||||
AssignGpuKernel() : input_size_(0) {}
|
||||
~AssignGpuKernel() override = default;
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
T *var = GetDeviceAddress<T>(inputs, 0);
|
||||
T *value = GetDeviceAddress<T>(inputs, 1);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(var, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemxcpyAsync failed.");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(output, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemxcpyAsync failed.");
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
if (!CheckParam(kernel_node)) {
|
||||
return false;
|
||||
}
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = sizeof(T);
|
||||
for (size_t x : shape) {
|
||||
input_size_ = input_size_ * x;
|
||||
}
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but AssignGpuKernel needs 2 output.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but AssignGpuKernel needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
|
||||
size_t input_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.assign = P.Assign()
|
||||
|
||||
def construct(self, var, value):
|
||||
return self.assign(var, value)
|
||||
|
||||
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
|
||||
value = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_assign():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
assign = Net()
|
||||
var = Tensor(x)
|
||||
output = assign(var, Tensor(value))
|
||||
|
||||
error = np.ones(shape=[2, 2]) * 1.0e-6
|
||||
diff1 = output.asnumpy() - value
|
||||
diff2 = var.asnumpy() - value
|
||||
assert np.all(diff1 < error)
|
||||
assert np.all(-diff1 < error)
|
||||
assert np.all(diff2 < error)
|
||||
assert np.all(-diff2 < error)
|
Loading…
Reference in New Issue