!672 Added UT for uniform augmentation C++ OP

Merge pull request !672 from AdelShafiei/ua_ut
This commit is contained in:
mindspore-ci-bot 2020-04-29 23:56:09 +08:00 committed by Gitee
commit 8d3695f666
3 changed files with 64 additions and 2 deletions

View File

@ -39,7 +39,7 @@ std::vector<std::string> StringSplit(const std::string &field, char separator) {
}
s_pos = e_pos + 1;
}
return std::move(res);
return res;
}
bool ValidateFieldName(const std::string &str) {

View File

@ -914,7 +914,7 @@ vector<std::string> ShardReader::GetAllColumns() {
} else {
columns = selected_columns_;
}
return std::move(columns);
return columns;
}
MSRStatus ShardReader::CreateTasksByBlock(const std::vector<std::tuple<int, int, int, uint64_t>> &row_group_summary,

View File

@ -18,6 +18,7 @@ import matplotlib.pyplot as plt
from mindspore import log as logger
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
import mindspore.dataset.transforms.vision.c_transforms as C
DATA_DIR = "../data/dataset/testImageNetData/train/"
@ -101,7 +102,68 @@ def test_uniform_augment(plot=False, num_ops=2):
if plot:
visualize(images_original, images_ua)
def test_cpp_uniform_augment(plot=False, num_ops=2):
"""
Test UniformAugment
"""
logger.info("Test CPP UniformAugment")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(), C.Resize(size=[224, 224]),
F.ToTensor()]
ds_original = ds.map(input_columns="image",
operations=transforms_original)
ds_original = ds_original.batch(512)
for idx, (image,label) in enumerate(ds_original):
if idx == 0:
images_original = np.transpose(image, (0, 2, 3, 1))
else:
images_original = np.append(images_original,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
# UniformAugment Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
C.RandomHorizontalFlip(),
C.RandomVerticalFlip(),
C.RandomColorAdjust(),
C.RandomRotation(degrees=45)]
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
transforms_all = [C.Decode(), C.Resize(size=[224, 224]),
uni_aug,
F.ToTensor()]
ds_ua = ds.map(input_columns="image",
operations=transforms_all, num_parallel_workers=1)
ds_ua = ds_ua.batch(512)
for idx, (image,label) in enumerate(ds_ua):
if idx == 0:
images_ua = np.transpose(image, (0, 2, 3, 1))
else:
images_ua = np.append(images_ua,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
if plot:
visualize(images_original, images_ua)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_ua[i] - images_original[i]) ** 2)
logger.info("MSE= {}".format(str(np.mean(mse))))
if __name__ == "__main__":
test_uniform_augment(num_ops=1)
test_cpp_uniform_augment(num_ops=1)