forked from mindspore-Ecosystem/mindspore
!269 Refactor random normal op
Merge pull request !269 from peixu_ren/custom_aicpu
This commit is contained in:
commit
8cc51969f3
|
@ -34,7 +34,7 @@ from .random_categorical import _random_categorical_aicpu
|
|||
from .cast import _cast_aicpu
|
||||
from .mirror_pad import _mirror_pad_aicpu
|
||||
from .mirror_pad_grad import _mirror_pad_grad_aicpu
|
||||
from .normal import _normal_aicpu
|
||||
from .standard_normal import _standard_normal_aicpu
|
||||
from .gamma import _gamma_aicpu
|
||||
from .poisson import _poisson_aicpu
|
||||
from .uniform_int import _uniform_int_aicpu
|
||||
|
|
|
@ -16,18 +16,17 @@
|
|||
"""RandomNormal op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
normal_op_info = AiCPURegOp("Normal") \
|
||||
normal_op_info = AiCPURegOp("StandardNormal") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "shape", "required") \
|
||||
.input(1, "mean", "required") \
|
||||
.input(2, "stddev", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.attr("seed2", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(normal_op_info)
|
||||
def _normal_aicpu():
|
||||
def _standard_normal_aicpu():
|
||||
"""RandomNormal AiCPU register"""
|
||||
return
|
|
@ -27,6 +27,7 @@ from .clip_ops import clip_by_value
|
|||
from .multitype_ops.add_impl import hyper_add
|
||||
from .multitype_ops.ones_like_impl import ones_like
|
||||
from .multitype_ops.zeros_like_impl import zeros_like
|
||||
from .random_ops import normal
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
@ -47,4 +48,5 @@ __all__ = [
|
|||
'zeros_like',
|
||||
'ones_like',
|
||||
'zip_operation',
|
||||
'clip_by_value']
|
||||
'normal',
|
||||
'clip_by_value',]
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Operations for random number generatos."""
|
||||
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from .. import operations as P
|
||||
|
||||
# set graph-level RNG seed
|
||||
_GRAPH_SEED = 0
|
||||
|
||||
@constexpr
|
||||
def set_seed(seed):
|
||||
global _GRAPH_SEED
|
||||
_GRAPH_SEED = seed
|
||||
|
||||
@constexpr
|
||||
def get_seed():
|
||||
return _GRAPH_SEED
|
||||
|
||||
|
||||
def normal(shape, mean, stddev, seed):
|
||||
"""
|
||||
Generates random numbers according to the Normal (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
|
||||
Args:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type.
|
||||
- **seed** (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> stddev = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.normal(shape, mean, stddev, seed=5)
|
||||
"""
|
||||
set_seed(10)
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
stdnormal = P.StandardNormal(seed1, seed2)
|
||||
rnd = stdnormal(shape)
|
||||
value = rnd * stddev + mean
|
||||
return value
|
|
@ -54,7 +54,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e,
|
||||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
RandomCategorical, Laplace)
|
||||
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
|
||||
BiasAdd, Conv2D,
|
||||
|
@ -173,7 +173,7 @@ __all__ = [
|
|||
'HSigmoid',
|
||||
'Tanh',
|
||||
'RandomChoiceWithMask',
|
||||
'Normal',
|
||||
'StandardNormal',
|
||||
'Gamma',
|
||||
'Poisson',
|
||||
'UniformInt',
|
||||
|
|
|
@ -22,23 +22,16 @@ from ..primitive import PrimitiveWithInfer, prim_attr_register
|
|||
from .._utils import get_broadcast_shape
|
||||
|
||||
|
||||
class Normal(PrimitiveWithInfer):
|
||||
class StandardNormal(PrimitiveWithInfer):
|
||||
r"""
|
||||
Generates random numbers according to the Normal (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
|
||||
.. math::
|
||||
\text{f}(x;μ,σ) = \frac{1}{σ\sqrt{2π}}\exp(-\frac{1}{2}(\frac{x-μ}{σ})^2),
|
||||
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
|
@ -46,31 +39,26 @@ class Normal(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> stddev = Tensor(1.0, mstype.float32)
|
||||
>>> normal = P.Normal(seed=2)
|
||||
>>> output = normal(shape, mean, stddev)
|
||||
>>> stdnormal = P.StandardNormal(seed=2)
|
||||
>>> output = stdnormal(shape)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
"""Init Normal"""
|
||||
self.init_prim_io_names(inputs=['shape', 'mean', 'stddev'], outputs=['output'])
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init StandardNormal"""
|
||||
self.init_prim_io_names(inputs=['shape'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, mean, stddev):
|
||||
def __infer__(self, shape):
|
||||
shape_v = shape["value"]
|
||||
if shape_v is None:
|
||||
raise ValueError(f"For {self.name}, shape must be const.")
|
||||
validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||
for i, shape_i in enumerate(shape_v):
|
||||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
|
||||
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
|
||||
validator.check_tensor_type_same({"stddev": stddev["dtype"]}, [mstype.float32], self.name)
|
||||
broadcast_shape = get_broadcast_shape(mean['shape'], stddev['shape'], self.name)
|
||||
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
|
||||
out = {
|
||||
'shape': broadcast_shape,
|
||||
'shape': shape_v,
|
||||
'dtype': mstype.float32,
|
||||
'value': None}
|
||||
return out
|
||||
|
|
|
@ -12,13 +12,15 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
@ -26,11 +28,11 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, mean, stddev):
|
||||
return self.normal(self.shape, mean, stddev)
|
||||
return C.normal(self.shape, mean, stddev, self.seed)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
|
@ -51,7 +53,7 @@ def test_net_ND():
|
|||
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
stddev = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
tmean, tstddev = Tensor(mean), Tensor(stddev)
|
||||
tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
|
||||
output = net(tmean, tstddev)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
self.seed2 = seed2
|
||||
self.stdnormal = P.StandardNormal(seed, seed2)
|
||||
|
||||
def construct(self):
|
||||
return self.stdnormal(self.shape, self.seed, self.seed2)
|
||||
|
||||
|
||||
def test_net():
|
||||
seed = 10
|
||||
seed2 = 10
|
||||
shape = (3, 2, 4)
|
||||
net = Net(shape, seed, seed2)
|
||||
output = net()
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 4)
|
|
@ -530,15 +530,13 @@ class InplaceSubNet(nn.Cell):
|
|||
|
||||
|
||||
class NormalNet(nn.Cell):
|
||||
def __init__(self, shape=None, mean=0.0, stddev=1.0, seed=0):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(NormalNet, self).__init__()
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.shape = shape
|
||||
self.mean = Tensor(mean, mstype.float32)
|
||||
self.stddev = Tensor(stddev, mstype.float32)
|
||||
self.seed = seed
|
||||
|
||||
def construct(self):
|
||||
out = self.normal(self.shape, self.mean, self.stddev)
|
||||
def construct(self, mean, stddev):
|
||||
out = C.normal(self.shape, mean, stddev, self.seed)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -860,8 +858,8 @@ test_case_math_ops = [
|
|||
'desc_inputs': [[64, 128, 1024]],
|
||||
'skip': ['backward']}),
|
||||
('Normal', {
|
||||
'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
|
||||
'desc_inputs': [],
|
||||
'block': NormalNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('Laplace', {
|
||||
'block': LaplaceNet((3, 2, 4), 0),
|
||||
|
@ -1171,10 +1169,6 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mstype.float16), Tensor([0.0, 5.0], mstype.float16)],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
('Normal', {
|
||||
'block': NormalNet((3, 2, 4), 0.0, 1.0, 0),
|
||||
'desc_inputs': [],
|
||||
'skip': ['backward']}),
|
||||
('Mod', {
|
||||
'block': P.Mod(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
|
|
Loading…
Reference in New Issue