diff --git a/tests/st/networks/test_gpu_lenet.py b/tests/st/networks/test_gpu_lenet.py index b6b94cd23d0..aaba8e6f93e 100644 --- a/tests/st/networks/test_gpu_lenet.py +++ b/tests/st/networks/test_gpu_lenet.py @@ -13,18 +13,26 @@ # limitations under the License. # ============================================================================ +import os import pytest import numpy as np -import mindspore.nn as nn -import mindspore.context as context from mindspore import Tensor -from mindspore.nn.optim import Momentum +import mindspore.context as context from mindspore.ops import operations as P -from mindspore.nn import TrainOneStepCell, WithLossCell -from mindspore.nn import Dense -from mindspore.common.initializer import initializer +import mindspore.nn as nn +from mindspore.nn import Dense, TrainOneStepCell, WithLossCell +from mindspore.nn.optim import Momentum +from mindspore.nn.metrics import Accuracy +from mindspore.train import Model from mindspore.common import dtype as mstype +from mindspore.common.initializer import initializer +from mindspore.model_zoo.lenet import LeNet5 +from mindspore.train.callback import LossMonitor +import mindspore.dataset as ds +import mindspore.dataset.transforms.vision.c_transforms as CV +import mindspore.dataset.transforms.c_transforms as C +from mindspore.dataset.transforms.vision import Inter context.set_context(mode=context.GRAPH_MODE, device_target="GPU") @@ -64,7 +72,7 @@ class LeNet(nn.Cell): def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): lr = [] for step in range(total_steps): - lr_ = base_lr * gamma ** (step//gap) + lr_ = base_lr * gamma ** (step // gap) lr.append(lr_) return Tensor(np.array(lr), dtype) @@ -90,3 +98,60 @@ def test_train_lenet(): loss = train_network(data, label) losses.append(loss) print(losses) + + +def create_dataset(data_path, batch_size=32, repeat_size=1, + num_parallel_workers=1): + """ + create dataset for train or test + """ + # define dataset + mnist_ds = ds.MnistDataset(data_path) + + resize_height, resize_width = 32, 32 + rescale = 1.0 / 255.0 + shift = 0.0 + rescale_nml = 1 / 0.3081 + shift_nml = -1 * 0.1307 / 0.3081 + + # define map operations + resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode + rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) + rescale_op = CV.Rescale(rescale, shift) + hwc2chw_op = CV.HWC2CHW() + type_cast_op = C.TypeCast(mstype.int32) + + # apply map operations on images + mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) + mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) + + # apply DatasetOps + buffer_size = 10000 + mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script + mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) + mnist_ds = mnist_ds.repeat(repeat_size) + + return mnist_ds + + +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_train_and_eval_lenet(): + context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False) + network = LeNet5(10) + net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") + net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) + model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) + + print("============== Starting Training ==============") + ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1) + model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True) + + print("============== Starting Testing ==============") + ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1) + acc = model.eval(ds_eval, dataset_sink_mode=True) + print("============== Accuracy:{} ==============".format(acc))