!314 GPU add kernel assign

Merge pull request !314 from VectorSL/assign
This commit is contained in:
mindspore-ci-bot 2020-04-16 19:36:30 +08:00 committed by Gitee
commit 87be386581
3 changed files with 176 additions and 0 deletions

View File

@ -0,0 +1,33 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/other/assign_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
Assign,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
AssignGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
Assign,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
AssignGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(
Assign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
AssignGpuKernel, int)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,93 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H
#define MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class AssignGpuKernel : public GpuKernel {
public:
AssignGpuKernel() : input_size_(0) {}
~AssignGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
T *var = GetDeviceAddress<T>(inputs, 0);
T *value = GetDeviceAddress<T>(inputs, 1);
T *output = GetDeviceAddress<T>(outputs, 0);
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(var, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemxcpyAsync failed.");
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(output, value, input_size_, cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemxcpyAsync failed.");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
if (!CheckParam(kernel_node)) {
return false;
}
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_size_ = sizeof(T);
for (size_t x : shape) {
input_size_ = input_size_ * x;
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(input_size_);
output_size_list_.push_back(input_size_);
}
private:
bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but AssignGpuKernel needs 2 output.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but AssignGpuKernel needs 1 output.";
return false;
}
return true;
}
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
size_t input_size_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_ASSIGN_GPU_KERNEL_H

View File

@ -0,0 +1,50 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.assign = P.Assign()
def construct(self, var, value):
return self.assign(var, value)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
value = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_assign():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
assign = Net()
var = Tensor(x)
output = assign(var, Tensor(value))
error = np.ones(shape=[2, 2]) * 1.0e-6
diff1 = output.asnumpy() - value
diff2 = var.asnumpy() - value
assert np.all(diff1 < error)
assert np.all(-diff1 < error)
assert np.all(diff2 < error)
assert np.all(-diff2 < error)