Fixed the bug that mean aggregator argument can not pass to base class and add attention head for GAT

This commit is contained in:
zhangdengcheng 2020-04-30 03:23:58 +00:00
parent fb4b16a593
commit 825d9740fa
2 changed files with 182 additions and 9 deletions

View File

@ -64,7 +64,7 @@ class GNNFeatureTransform(nn.Cell):
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
"""
@cell_attr_register(attrs=['has_bias', 'activation'])
@cell_attr_register
def __init__(self,
in_channels,
out_channels,
@ -125,7 +125,7 @@ class _BaseAggregator(nn.Cell):
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
Examples:
>>> class MyAggregator(_BaseAggregator):
@ -203,12 +203,12 @@ class MeanAggregator(_BaseAggregator):
super(MeanAggregator, self).__init__(
feature_in_dim,
feature_out_dim,
use_fc=True,
weight_init="normal",
bias_init="zeros",
has_bias=True,
dropout_ratio=None,
activation=None)
use_fc,
weight_init,
bias_init,
has_bias,
dropout_ratio,
activation)
self.reduce_mean = P.ReduceMean(keep_dims=False)
def construct(self, input_feature):
@ -220,3 +220,157 @@ class MeanAggregator(_BaseAggregator):
input_feature = self.activation(input_feature)
output_feature = self.reduce_mean(input_feature, 1)
return output_feature
class AttentionHead(nn.Cell):
"""
Attention Head for Graph Attention Networks.
Args:
in_channel (int): The number of input channel, input feature dim.
out_channel (int): The number of output channel, output feature dim.
in_drop_ratio (float): Input feature dropout ratio, default 0.0.
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
residual (bool): Whether to use residual connection, default False.
coef_activation (Cell): The attention coefficient activation function,
default nn.LeakyReLU().
activation (Cell): The output activation function, default nn.ELU().
Inputs:
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
- **bias_mat** (Tensor) - Tensor of shape : (batch_size, num_nodes, num_nodes).
Examples:
>>> head = AttentionHead(1433,
8,
in_drop_ratio=0.6,
coef_drop_ratio=0.6,
residual=False)
>>> input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtypy=np.float32))
>>> output = net(input_data)
"""
def __init__(self,
in_channel,
out_channel,
in_drop_ratio=0.0,
coef_drop_ratio=0.0,
residual=False,
coef_activation=nn.LeakyReLU(),
activation=nn.ELU()):
super(AttentionHead, self).__init__()
self.in_channel = check_int_positive(in_channel)
self.out_channel = check_int_positive(out_channel)
self.in_drop_ratio = in_drop_ratio
self.in_drop = nn.Dropout(keep_prob=1 - in_drop_ratio)
self.in_drop_2 = nn.Dropout(keep_prob=1 - in_drop_ratio)
self.feature_transform = GNNFeatureTransform(
in_channels=self.in_channel,
out_channels=self.out_channel,
has_bias=False)
self.f_1_transform = GNNFeatureTransform(
in_channels=self.out_channel,
out_channels=1)
self.f_2_transform = GNNFeatureTransform(
in_channels=self.out_channel,
out_channels=1)
self.softmax = nn.Softmax()
self.coef_drop = nn.Dropout(keep_prob=1 - coef_drop_ratio)
self.batch_matmul = P.BatchMatMul()
self.bias_add = P.BiasAdd()
self.bias = Parameter(initializer('zeros', self.out_channel), name='bias')
self.residual = check_bool(residual)
if self.residual:
if in_channel != out_channel:
self.residual_transform_flag = True
self.residual_transform = GNNFeatureTransform(
in_channels=self.in_channel,
out_channels=self.out_channel)
else:
self.residual_transform = None
self.coef_activation = coef_activation
self.activation = activation
def construct(self, input_feature, bias_mat):
input_feature = self.in_drop(input_feature)
feature = self.feature_transform(input_feature)
# self attention following the author
f_1 = self.f_1_transform(feature)
f_2 = self.f_2_transform(feature)
logits = f_1 + P.Transpose()(f_2, (0, 2, 1))
logits = self.coef_activation(logits) + bias_mat
coefs = self.softmax(logits)
coefs = self.coef_drop(coefs)
feature = self.in_drop_2(feature)
ret = self.batch_matmul(coefs, feature)
ret = P.Squeeze(0)(ret)
ret = self.bias_add(ret, self.bias)
ret = P.ExpandDims()(ret, 0)
# residual connection
if self.residual:
if self.residual_transform_flag:
res = self.residual_transform(input_feature)
ret = ret + res
else:
ret = ret + input_feature
# activation
ret = self.activation(ret)
return ret
class AttentionAggregator(nn.Cell):
"""
Attention Head for Graph Attention Networkscan be regarded as one
GAT layer.
Args:
in_channel (int): Input channel.
out_channel (int): Output channel.
num_heads (int): Number of attention heads for this layer, default 1.
in_drop_ratio (float): Input feature dropout ratio, default 0.0.
coef_drop_ratio (float): Coefficient dropout ratio, default 0.0.
activation (Cell): The output activation function, default nn.ELU().
residual (bool): Whether to use residual connection, default False.
Inputs:
- **input_feature** (Tensor) - Tensor of shape : (batch_size, num_nodes, feature_dim).
- **bias_mat** (Tensor) - Tensor of shape : (batch_size, num_nodes, num_nodes).
Examples:
>>> input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
>>> biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
>>> net = AttentionAggregator(1433,
8,
8)
>>> net(input_data, biases)
"""
def __init__(self,
in_channels,
out_channels,
num_heads=1,
in_drop=0.0,
coef_drop=0.0,
activation=nn.ELU(),
residual=False):
super(AttentionAggregator, self).__init__()
self.num_heads = num_heads
self.attns = []
for _ in range(num_heads):
self.attns.append(AttentionHead(in_channels,
out_channels,
in_drop_ratio=in_drop,
coef_drop_ratio=coef_drop,
activation=activation,
residual=residual))
self.attns = nn.layer.CellList(self.attns)
def construct(self, input_data, bias_mat):
res = ()
for i in range(self.num_heads):
res += (self.attns[i](input_data, bias_mat),)
return P.Concat(-1)(res)

View File

@ -20,7 +20,7 @@ import mindspore.context as context
from mindspore import Tensor
from mindspore.common.api import _executor
import mindspore.ops.composite as C
from aggregator import MeanAggregator
from aggregator import MeanAggregator, AttentionHead, AttentionAggregator
context.set_context(mode=context.GRAPH_MODE)
@ -51,3 +51,22 @@ def test_MeanAggregator_grad():
sens = Tensor(np.ones([32, 64]).astype(np.float32))
grad_op = MeanAggregatorGrad(aggregator)
_executor.compile(grad_op, input_data, sens)
def test_AttentionHead():
"""Compile AttentionHead forward graph"""
head = AttentionHead(1433,
8,
in_drop_ratio=0.6,
coef_drop_ratio=0.6,
residual=False)
input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
_executor.compile(head, input_data, biases)
def test_AttentionAggregator():
input_data = Tensor(np.array(np.random.rand(1, 2708, 1433), dtype=np.float32))
biases = Tensor(np.array(np.random.rand(1, 2708, 2708), dtype=np.float32))
net = AttentionAggregator(1433, 8, 8)
_executor.compile(net, input_data, biases)