forked from mindspore-Ecosystem/mindspore
implement AddN fission pass
This commit is contained in:
parent
e8f6c1a4e6
commit
7307c81f31
|
@ -58,6 +58,7 @@
|
|||
#include "pre_activate/ascend/ir_fission/add_memcpy_async.h"
|
||||
#include "pre_activate/ascend/format_type/insert_cast_for_runop.h"
|
||||
#include "pre_activate/ascend/format_type/insert_transdata_for_runop.h"
|
||||
#include "pre_activate/ascend/ir_fission/addn_fission.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
#include "debug/anf_ir_utils.h"
|
||||
|
@ -175,6 +176,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
|
|||
ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<MatmulBiasaddFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<AddnFission>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,81 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fission/addn_fission.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
AnfNodePtr CreateNewAddn(const FuncGraphPtr &func_graph, const CNodePtr &origin_addn_cnode, size_t begin_index,
|
||||
size_t offset) {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_EXCEPTION_IF_NULL(origin_addn_cnode);
|
||||
std::vector<AnfNodePtr> new_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
|
||||
for (size_t i = begin_index; i < begin_index + offset; ++i) {
|
||||
new_addn_inputs.push_back(origin_addn_cnode->input(i));
|
||||
}
|
||||
CNodePtr new_addn = func_graph->NewCNode(new_addn_inputs);
|
||||
MS_EXCEPTION_IF_NULL(new_addn);
|
||||
new_addn->set_scope(origin_addn_cnode->scope());
|
||||
new_addn->set_abstract(origin_addn_cnode->abstract());
|
||||
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(offset)), new_addn);
|
||||
return new_addn;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef AddnFission::DefinePattern() const {
|
||||
VarPtr Xs = std::make_shared<SeqVar>();
|
||||
return VectorRef({prim::kPrimAddN, Xs});
|
||||
}
|
||||
|
||||
const AnfNodePtr AddnFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(func_graph);
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
// The real input begins with index 1.
|
||||
size_t origin_input_size = cnode->inputs().size() - 1;
|
||||
if (origin_input_size <= inputs_divisor_) {
|
||||
return nullptr;
|
||||
}
|
||||
CNodePtr new_cnode = cnode;
|
||||
while (origin_input_size > inputs_divisor_) {
|
||||
std::vector<AnfNodePtr> base_addn_inputs{NewValueNode(std::make_shared<Primitive>(prim::kPrimAddN->name()))};
|
||||
size_t cur_input_index = 1;
|
||||
// Divide the inputs of addn by 63.
|
||||
while (origin_input_size - cur_input_index + 1 > inputs_divisor_) {
|
||||
base_addn_inputs.push_back(CreateNewAddn(func_graph, new_cnode, cur_input_index, inputs_divisor_));
|
||||
cur_input_index += inputs_divisor_;
|
||||
}
|
||||
base_addn_inputs.push_back(
|
||||
CreateNewAddn(func_graph, new_cnode, cur_input_index, origin_input_size - cur_input_index + 1));
|
||||
|
||||
CNodePtr base_addn = func_graph->NewCNode(base_addn_inputs);
|
||||
MS_EXCEPTION_IF_NULL(base_addn);
|
||||
MS_EXCEPTION_IF_NULL(new_cnode);
|
||||
base_addn->set_scope(new_cnode->scope());
|
||||
base_addn->set_abstract(new_cnode->abstract());
|
||||
AnfAlgo::SetNodeAttr(kAttrN, MakeValue(SizeToInt(base_addn_inputs.size() - 1)), base_addn);
|
||||
new_cnode = base_addn;
|
||||
origin_input_size = base_addn->inputs().size() - 1;
|
||||
}
|
||||
|
||||
return new_cnode;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
||||
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
constexpr size_t kAddnInputsDivisor = 63;
|
||||
class AddnFission : public PatternProcessPass {
|
||||
public:
|
||||
explicit AddnFission(bool multigraph = true)
|
||||
: PatternProcessPass("addn_fission", multigraph), inputs_divisor_(kAddnInputsDivisor) {}
|
||||
~AddnFission() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
|
||||
private:
|
||||
size_t inputs_divisor_;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_ADDN_FISSION_H_
|
|
@ -142,6 +142,7 @@ constexpr auto kAttrDynInputSizes = "dyn_input_sizes";
|
|||
constexpr auto kAttrSrcFormat = "src_format";
|
||||
constexpr auto kAttrOutputUsedNum = "output_used_num";
|
||||
constexpr auto kAttrHasBias = "has_bias";
|
||||
constexpr auto kAttrN = "N";
|
||||
|
||||
// attr value
|
||||
constexpr auto kValueTargetSwitch = "target_switch";
|
||||
|
|
|
@ -0,0 +1,160 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#define private public
|
||||
#define protected public
|
||||
#include "pre_activate/ascend/ir_fission/addn_fission.h"
|
||||
#undef private
|
||||
#undef protected
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWAddnFission : public BackendCommon {
|
||||
public:
|
||||
TestHWAddnFission() : get_py_fun_("gtest_input.pre_activate.addn_fission_test", true) {}
|
||||
~TestHWAddnFission() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_2) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 9; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||
addn_fission->inputs_divisor_ = 2;
|
||||
pm->AddPass(addn_fission);
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_2");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||
}
|
||||
|
||||
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_3) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 9; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||
addn_fission->inputs_divisor_ = 3;
|
||||
pm->AddPass(addn_fission);
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_3");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||
}
|
||||
|
||||
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_4) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 9; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||
addn_fission->inputs_divisor_ = 4;
|
||||
pm->AddPass(addn_fission);
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_4");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||
}
|
||||
|
||||
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_8) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 9; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||
addn_fission->inputs_divisor_ = 8;
|
||||
pm->AddPass(addn_fission);
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_8");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||
}
|
||||
|
||||
TEST_F(TestHWAddnFission, test_addn_fission_divided_by_9) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_addn_fission", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{2, 32, 224, 224};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 9; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
auto addn_fission = std::make_shared<opt::AddnFission>();
|
||||
addn_fission->inputs_divisor_ = 9;
|
||||
pm->AddPass(addn_fission);
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_addn_fission", "after_divided_by_9");
|
||||
EXPECT_NE(g_after, nullptr);
|
||||
auto kg_after = GetKernelGraph(g_after, args_spec_list);
|
||||
EXPECT_TRUE(CheckEqualGraph(kg_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
addn = P.AddN()
|
||||
make_tuple = Primitive('make_tuple')
|
||||
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
|
||||
def test_addn_fission(tag):
|
||||
""" test_adam_apply_one_with_decay_rule """
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
|
||||
|
||||
@fns
|
||||
def after_divided_by_2(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
a = addn((input0, input1))
|
||||
b = addn((input2, input3))
|
||||
c = addn((input4, input5))
|
||||
d = addn((input6, input7))
|
||||
e = addn((input8,))
|
||||
f = addn((a, b))
|
||||
g = addn((c, d))
|
||||
h = addn((e,))
|
||||
i = addn((f, g))
|
||||
j = addn((h,))
|
||||
return addn((i, j))
|
||||
|
||||
@fns
|
||||
def after_divided_by_3(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
a = addn((input0, input1, input2))
|
||||
b = addn((input3, input4, input5))
|
||||
c = addn((input6, input7, input8))
|
||||
return addn((a, b, c))
|
||||
|
||||
@fns
|
||||
def after_divided_by_4(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
a = addn((input0, input1, input2, input3))
|
||||
b = addn((input4, input5, input6, input7))
|
||||
c = addn((input8,))
|
||||
return addn((a, b, c))
|
||||
|
||||
@fns
|
||||
def after_divided_by_8(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
a = addn((input0, input1, input2, input3, input4, input5, input6, input7))
|
||||
b = addn((input8,))
|
||||
return addn((a, b))
|
||||
|
||||
@fns
|
||||
def after_divided_by_9(input0, input1, input2, input3, input4, input5, input6, input7, input8):
|
||||
return addn((input0, input1, input2, input3, input4, input5, input6, input7, input8))
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue