!844 validate the accuracy for resnet cifar

Merge pull request !844 from chujinjin/add_accuracy_for_resnet_cifar
This commit is contained in:
mindspore-ci-bot 2020-04-29 20:27:58 +08:00 committed by Gitee
commit 70f8b66d9f
1 changed files with 198 additions and 0 deletions

View File

@ -0,0 +1,198 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore import context
import mindspore.common.dtype as mstype
import os
import numpy as np
import mindspore.ops.functional as F
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as vision
from resnet import resnet50
import random
import time
random.seed(1)
np.random.seed(1)
ds.config.set_seed(1)
data_home = "/home/workspace/mindspore_dataset"
def create_dataset(repeat_num=1, training=True, batch_size=32):
data_dir = data_home + "/cifar-10-batches-bin"
if not training:
data_dir = data_home + "/cifar-10-verify-bin"
data_set = ds.Cifar10Dataset(data_dir)
resize_height = 224
resize_width = 224
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
random_crop_op = vision.RandomCrop(
(32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
# interpolation default BILINEAR
resize_op = vision.Resize((resize_height, resize_width))
rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize(
(0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op,
changeswap_op]
# apply map operations on images
data_set = data_set.map(input_columns="label", operations=type_cast_op)
data_set = data_set.map(input_columns="image", operations=c_trans)
# apply shuffle operations
data_set = data_set.shuffle(buffer_size=1000)
# apply batch operations
data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
# apply repeat operations
data_set = data_set.repeat(repeat_num)
return data_set
class CrossEntropyLoss(nn.Cell):
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean()
self.one_hot = P.OneHot()
self.one = Tensor(1.0, mstype.float32)
self.zero = Tensor(0.0, mstype.float32)
def construct(self, logits, label):
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
loss = self.cross_entropy(logits, label)[0]
loss = self.mean(loss, (-1,))
return loss
class LossGet(Callback):
def __init__(self, per_print_times=1):
super(LossGet, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self._per_print_times = per_print_times
self._loss = 0.0
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training."
.format(cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
self._loss = loss
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss))
def get_loss(self):
return self._loss
def train_process(device_id, epoch_size, num_classes, device_num, batch_size):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True, device_id=device_id)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)
context.set_context(mode=context.GRAPH_MODE)
net = resnet50(batch_size, num_classes)
loss = CrossEntropyLoss()
opt = Momentum(filter(lambda x: x.requires_grad,
net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
dataset = create_dataset(epoch_size, training=True, batch_size=batch_size)
batch_num = dataset.get_dataset_size()
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=1)
ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10_device_id_" + str(device_id), directory="./",
config=config_ck)
loss_cb = LossGet()
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
def eval(batch_size, num_classes):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True, device_id=0)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)
net = resnet50(batch_size, num_classes)
loss = CrossEntropyLoss()
opt = Momentum(filter(lambda x: x.requires_grad,
net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
checkpoint_path = "./train_resnet_cifar10_device_id_0-1_1562.ckpt"
param_dict = load_checkpoint(checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
eval_dataset = create_dataset(1, training=False)
res = model.eval(eval_dataset)
print("result: ", res)
return res
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_resnet_cifar_1p():
device_num = 1
epoch_size = 1
num_classes = 10
batch_size = 32
device_id = 0
train_process(device_id, epoch_size, num_classes, device_num, batch_size)
time.sleep(3)
acc = eval(batch_size, num_classes)
os.chdir("../")
os.system("rm -rf " + str(device_id))
print("End training...")
assert (acc['acc'] > 0.35)