forked from mindspore-Ecosystem/mindspore
update some comments of api
This commit is contained in:
parent
b7c92aa8b1
commit
6d821235c0
|
@ -0,0 +1,429 @@
|
|||
## MindSpore Deep Probabilistic Programming
|
||||
|
||||
![MindSpore+ZhuSuan](https://images.gitee.com/uploads/images/2020/0814/172009_ff0cdc1a_6585083.png "MS-Zhusuan.PNG")
|
||||
|
||||
MindSpore Deep Probabilistic Programming (MDP) is a programming library for Bayesian deep learning. MDP is cooperatively developed with [ZhuSuan](https://zhusuan.readthedocs.io/en/latest/), which provides deep learning style primitives and algorithms for building probabilistic models and applying Bayesian inference.
|
||||
|
||||
The objective of MDP is to integrate deep learning with Bayesian learning. On the one hand, similar to other Deep Probabilistic Programming Languages (DPPL) (e.g., TFP, Pyro), for the professional Bayesian learning researchers, MDP provides probability sampling, inference algorithms, and model building libraries; On the other hand, MDP provides high-level APIs for DNN researchers that are unfamiliar with Bayesian models, making it possible to take advantage of Bayesian models without the need of changing their DNN programming logics.
|
||||
|
||||
|
||||
**Layer 0: High performance kernels for different platforms**
|
||||
|
||||
- Random sampling kernels;
|
||||
- Mathematical kernels that are used by Bayesian models.
|
||||
|
||||
**Layer 1: Probabilistic Programming (PP) focuses on professional Bayesian learning**
|
||||
|
||||
**Layer 1-1: Statistical distributions classes used to generate stochastic tensors**
|
||||
|
||||
- Distributions ([mindspore.nn.probability.distribution](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/distribution)): A large collection of probability distributions.
|
||||
- Bijectors([mindspore.nn.probability.bijectors](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bijector)): Reversible and composable transformations of random variables.
|
||||
|
||||
**Layer 1-2: Probabilistic inference algorithms**
|
||||
|
||||
- SVI([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A unified interface for stochastic variational inference.
|
||||
- MC: Algorithms for approximating integrals via sampling.
|
||||
|
||||
**Layer 2: Deep Probabilistic Programming (DPP) aims to provide composable BNN modules**
|
||||
|
||||
- Layers([mindspore.nn.probability.bnn_layers](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bnn_layers)): BNN layers, which are used to construct BNN.
|
||||
- Bnn: A bunch of BNN models that allow to be integrated into DNN;
|
||||
- Transform([mindspore.nn.probability.transforms](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/transforms)): Interfaces for the transformation between BNN and DNN;
|
||||
- Context: context managers for models and layers.
|
||||
|
||||
**Layer 3: Toolbox provides a set of BNN tools for some specific applications**
|
||||
- Uncertainty Estimation([mindspore.nn.probability.toolbox.uncertainty_evaluate](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/toolbox/uncertainty_evaluate.py)): Interfaces to estimate epistemic uncertainty and aleatoric uncertainty.
|
||||
- OoD detection: Interfaces to detect out of distribution samples.
|
||||
|
||||
![Structure of MDP](https://images.gitee.com/uploads/images/2020/0820/115117_2a20da64_7825995.png "MDP.png")
|
||||
MDP requires MindSpore version 0.7.0-beta or later. MDP is actively evolving. Interfaces may change as Mindspore releases are iteratively updated.
|
||||
|
||||
### Tutorial
|
||||
**Bayesian Neural Network**
|
||||
1. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) in Tutorial.
|
||||
|
||||
2. Define a Bayesian Neural Network. The bayesian LeNet is used in this example.
|
||||
|
||||
```
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.probability import bnn_layers
|
||||
|
||||
class BNNLeNet5(nn.Cell):
|
||||
"""
|
||||
bayesian Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> BNNLeNet5(num_class=10)
|
||||
|
||||
"""
|
||||
def __init__(self, num_class=10):
|
||||
super(BNNLeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = bnn_layers.ConvReparam(1, 6, 5, stride=1, padding=0, has_bias=False, pad_mode="valid")
|
||||
self.conv2 = bnn_layers.ConvReparam(6, 16, 5, stride=1, padding=0, has_bias=False, pad_mode="valid")
|
||||
self.fc1 = bnn_layers.DenseReparam(16 * 5 * 5, 120)
|
||||
self.fc2 = bnn_layers.DenseReparam(120, 84)
|
||||
self.fc3 = bnn_layers.DenseReparam(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
```
|
||||
The way to construct Bayesian Neural Network by bnn_layers is the same as DNN. It's worth noting that bnn_layers and traditional layers of DNN can be combined with each other.
|
||||
|
||||
3. Define the Loss Function and Optimizer
|
||||
- Defining the Loss Function
|
||||
The loss function `SoftmaxCrossEntropyWithLogits` is used in the example.
|
||||
|
||||
```
|
||||
form mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
```
|
||||
Call the defined loss function in the `__main__` function.
|
||||
|
||||
```
|
||||
if __name__ == "__main__":
|
||||
...
|
||||
# define the loss function
|
||||
criterion = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
...
|
||||
```
|
||||
- Defining the Optimizer
|
||||
The Optimizer `AdamWeightDecay` is used in this example.
|
||||
|
||||
```
|
||||
optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
|
||||
```
|
||||
|
||||
4. Train the Network
|
||||
The process of Bayesian network training is basically the same as that of DNN, the only differance is that WithLossCell is replaced with WithBNNLossCell suitable for BNN.
|
||||
Based on the two parameters `backbone` and `loss_fn` in WithLossCell, WithBNNLossCell adds two parameters of `dnn_factor` and `bnn_factor`. Those two parameters are used to trade off backbone's loss and kl loss to prevent kl loss from being too large to cover backbone's loss.
|
||||
|
||||
```
|
||||
if __name__ == "__main__":
|
||||
...
|
||||
net_with_loss = bnn_layers.WithBNNLossCell(network, criterion, dnn_factor=60000, bnn_factor=0.000001)
|
||||
train_bnn_network = TrainOneStepCell(net_with_loss, optimizer)
|
||||
train_bnn_network.set_train()
|
||||
|
||||
train_set = create_dataset('./mnist_data/train', 64, 1)
|
||||
test_set = create_dataset('./mnist_data/test', 64, 1)
|
||||
|
||||
epoch = 100
|
||||
|
||||
for i in range(epoch):
|
||||
train_loss, train_acc = train_model(train_bnn_network, test_set)
|
||||
|
||||
valid_acc = validate_model(network, test_set)
|
||||
|
||||
print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format(i, train_loss, train_acc, valid_acc))
|
||||
```
|
||||
|
||||
**Variational Inference**
|
||||
1. Define the Variational Autoencoder, we only need to self-define the encoder and decoder(DNN model).
|
||||
|
||||
```
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.probability.dpn import VAE
|
||||
|
||||
class Encoder(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Encoder, self).__init__()
|
||||
self.fc1 = nn.Dense(1024, 800)
|
||||
self.fc2 = nn.Dense(800, 400)
|
||||
self.relu = nn.ReLU()
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Decoder, self).__init__()
|
||||
self.fc1 = nn.Dense(400, 1024)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, z):
|
||||
z = self.fc1(z)
|
||||
z = self.reshape(z, IMAGE_SHAPE)
|
||||
z = self.sigmoid(z)
|
||||
return z
|
||||
|
||||
|
||||
encoder = Encoder()
|
||||
decoder = Decoder()
|
||||
vae = VAE(encoder, decoder, hidden_size=400, latent_size=20)
|
||||
```
|
||||
2. Use ELBO interface to define the loss function and define the optimizer, then construct the cell_net using WithLossCell.
|
||||
|
||||
```
|
||||
from mindspore.nn.probability.infer import ELBO
|
||||
|
||||
net_loss = ELBO(latent_prior='Normal', output_prior='Normal')
|
||||
optimizer = nn.Adam(params=vae.trainable_params(), learning_rate=0.001)
|
||||
net_with_loss = nn.WithLossCell(vae, net_loss)
|
||||
```
|
||||
3. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) in Tutorial.
|
||||
4. Use SVI interface to train VAE network. vi.run can return the trained network, get_train_loss can get the loss after training.
|
||||
|
||||
```
|
||||
from mindspore.nn.probability.infer import SVI
|
||||
|
||||
vi = SVI(net_with_loss=net_with_loss, optimizer=optimizer)
|
||||
vae = vi.run(train_dataset=ds_train, epochs=10)
|
||||
trained_loss = vi.get_train_loss()
|
||||
```
|
||||
5. Use the trained VAE network, we can generate new samples or reconstruct the input samples.
|
||||
|
||||
```
|
||||
generated_sample = vae.generate_sample(64, IMAGE_SHAPE)
|
||||
reconstructed_sample = vae.reconstruct_sample(sample_x)
|
||||
```
|
||||
|
||||
|
||||
**Transform DNN to BNN**
|
||||
For DNN researchers who are unfamiliar with Bayesian models, MDP provides high-level APIs `TransformToBNN` to support one-click conversion of DNN models to BNN models.
|
||||
1. Define a Deep Neural Network. The LeNet is used in this example.
|
||||
|
||||
```
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
import mindspore.nn as nn
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet5(num_class=10)
|
||||
|
||||
"""
|
||||
def __init__(self, num_class=10):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(1, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
```
|
||||
|
||||
2. Wrap DNN by TrainOneStepCell
|
||||
|
||||
```
|
||||
if __name__ == "__main__":
|
||||
network = LeNet5()
|
||||
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001)
|
||||
|
||||
net_with_loss = WithLossCell(network, criterion)
|
||||
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
||||
```
|
||||
|
||||
3. Instantiate class `TransformToBNN`
|
||||
The `__init__` of `TransformToBNN` are as follows:
|
||||
|
||||
```
|
||||
class TransformToBNN:
|
||||
def __init__(self, trainable_dnn, dnn_factor=1, bnn_factor=1):
|
||||
net_with_loss = trainable_dnn.network
|
||||
self.optimizer = trainable_dnn.optimizer
|
||||
self.backbone = net_with_loss.backbone_network
|
||||
self.loss_fn = getattr(net_with_loss, "_loss_fn")
|
||||
self.dnn_factor = dnn_factor
|
||||
self.bnn_factor = bnn_factor
|
||||
self.bnn_loss_file = None
|
||||
```
|
||||
The arg `trainable_dnn` specifies a trainable DNN model wrapped by TrainOneStepCell, `dnn_factor` is the coefficient of backbone's loss, which is computed by loss function, and `bnn_factor` is the coefficient of kl loss, which is kl divergence of Bayesian layer. `dnn_factor` and `bnn_factor` are used to trade off backbone's loss and kl loss to prevent kl loss from being too large to cover backbone's loss.
|
||||
|
||||
```
|
||||
from mindspore.nn.probability import transforms
|
||||
|
||||
if __name__ == "__main__":
|
||||
```
|
||||
bnn_transformer = transforms.TransformToBNN(train_network, 60000, 0.000001)
|
||||
```
|
||||
|
||||
4-1. Transform the whole model
|
||||
The method `transform_to_bnn_model` can transform both convolutional layer and full connection layer of DNN model to BNN model. Its code is as follows:
|
||||
|
||||
```
|
||||
def transform_to_bnn_model(self,
|
||||
get_dense_args=lambda dp: {"in_channels": dp.in_channels, "has_bias": dp.has_bias,
|
||||
"out_channels": dp.out_channels, "activation": dp.activation},
|
||||
get_conv_args=lambda dp: {"in_channels": dp.in_channels, "out_channels": dp.out_channels,
|
||||
"pad_mode": dp.pad_mode, "kernel_size": dp.kernel_size,
|
||||
"stride": dp.stride, "has_bias": dp.has_bias,
|
||||
"padding": dp.padding, "dilation": dp.dilation,
|
||||
"group": dp.group},
|
||||
add_dense_args=None,
|
||||
add_conv_args=None):
|
||||
r"""
|
||||
Transform the whole DNN model to BNN model, and wrap BNN model by TrainOneStepCell.
|
||||
|
||||
Args:
|
||||
get_dense_args (function): The arguments gotten from the DNN full connection layer. Default: lambda dp:
|
||||
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "has_bias": dp.has_bias}.
|
||||
get_conv_args (function): The arguments gotten from the DNN convolutional layer. Default: lambda dp:
|
||||
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "pad_mode": dp.pad_mode,
|
||||
"kernel_size": dp.kernel_size, "stride": dp.stride, "has_bias": dp.has_bias}.
|
||||
add_dense_args (dict): The new arguments added to BNN full connection layer. Default: {}.
|
||||
add_conv_args (dict): The new arguments added to BNN convolutional layer. Default: {}.
|
||||
|
||||
Returns:
|
||||
Cell, a trainable BNN model wrapped by TrainOneStepCell.
|
||||
"""
|
||||
```
|
||||
Arg `get_dense_args` specifies which arguments to be gotten from full connection layer of DNN. Its Default value contains arguments common to nn.Dense and DenseReparameterization. Arg `get_conv_args` specifies which arguments to be gotten from convolutional layer of DNN. Its Default value contains arguments common to nn.Con2d and ConvReparameterization. Arg `add_dense_args` and `add_conv_args` specify which arguments to be add to full connection layer and convolutional layer of BNN. Note that the parameters in `add_dense_args` cannot be repeated with `get_dense_args`, so do `add_conv_args` and `get_conv_args`.
|
||||
|
||||
```
|
||||
if __name__ == "__main__":
|
||||
```
|
||||
train_bnn_network = bnn_transformer.transform_to_bnn_model()
|
||||
```
|
||||
|
||||
4-2. Transform a specific type of layers
|
||||
The method `transform_to_bnn_layer` can transform a specific type of layers (nn.Dense or nn.Conv2d) in DNN model to corresponding BNN layer. Its code is as follows:
|
||||
|
||||
```
|
||||
def transform_to_bnn_layer(self, dnn_layer, bnn_layer, get_args, add_args={}):
|
||||
r"""
|
||||
Transform a specific type of layers in DNN model to corresponding BNN layer.
|
||||
|
||||
Args:
|
||||
dnn_layer_type (Cell): The type of DNN layer to be transformed to BNN layer. The optional values are
|
||||
nn.Dense, nn.Conv2d.
|
||||
bnn_layer_type (Cell): The type of BNN layer to be transformed to. The optional values are
|
||||
DenseReparameterization, ConvReparameterization.
|
||||
get_args (dict): The arguments gotten from the DNN layer. Default: None.
|
||||
add_args (dict): The new arguments added to BNN layer. Default: None.
|
||||
|
||||
Returns:
|
||||
Cell, a trainable model wrapped by TrainOneStepCell, whose sprcific type of layer is transformed to the corresponding bayesian layer.
|
||||
"""
|
||||
```
|
||||
Arg `dnn_layer` specifies which type of DNN layer to be transformed to BNN layer. The optional values are nn.Dense and nn.Conv2d. Arg `bnn_layer` specifies which type of BNN layer to be transformed to. The value should correspond to dnn_layer. Arg `get_args` and `add_args` specify the arguments gotten from DNN layer and the new arguments added to BNN layer respectively.
|
||||
|
||||
```
|
||||
if __name__ == "__main__":
|
||||
```
|
||||
train_bnn_network = bnn_transformer.transform_to_bnn_model()
|
||||
```
|
||||
|
||||
**Uncertainty Evaluation**
|
||||
The uncertainty estimation toolbox is based on MindSpore Deep Probabilistic Programming (MDP), and it is suitable for mainstream deep learning models, such as regression, classification, target detection and so on. In the inference stage, with the uncertainy estimation toolbox, developers only need to pass in the trained model and training dataset, specify the task and the samples to be estimated, then can obtain the aleatoric uncertainty and epistemic uncertainty. Based the uncertainty information, developers can understand the model and the dataset better.
|
||||
- **Classification Task**
|
||||
In classification task, for example, the model is lenet model, and the training dataset is mnist dataset. For evaluating the uncertainty of test examples, the use of the toolbox is as follows:
|
||||
```
|
||||
evaluation = UncertaintyEvaluation(model=lenet,
|
||||
train_dataset=mnist,
|
||||
task_type='classification',
|
||||
num_classes=10,
|
||||
epochs=1,
|
||||
epi_uncer_model_path=None,
|
||||
ale_uncer_model_path=None,
|
||||
save_model=False)
|
||||
epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data)
|
||||
aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data)
|
||||
```
|
||||
- **Regression Task**
|
||||
|
||||
In regression task, for example, the model is MLP model, the training dataset is boston_housing. For evaluating the uncertainty of test examples, the use of the toolbox is as follows:
|
||||
```
|
||||
evaluation = UncertaintyEvaluation(model=MLP,
|
||||
train_dataset=boston_housing,
|
||||
task_type='regression',
|
||||
epochs=1,
|
||||
epi_uncer_model_path=None,
|
||||
ale_uncer_model_path=None,
|
||||
save_model=False)
|
||||
epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data)
|
||||
aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data)
|
||||
```
|
||||
|
||||
|
||||
|
||||
### Examples
|
||||
Examples in [mindspore/tests/st/probability](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability) are as follows:
|
||||
- [Bayesian LeNet](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_bnn_layer.py). How to construct and train a LeNet by bnn layers.
|
||||
- [Transform whole DNN model to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_model.py): How to transform whole DNN model to BNN.
|
||||
- [Transform DNN layer to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_layer.py): How to transform one certainty type of layer in DNN model to corresponding Bayesian layer.
|
||||
- [Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_vae.py): Variational Auto-Encoder (VAE) model trained with MNIST to generate sample images.
|
||||
- [Conditional Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_cvae.py): Conditional Variational Auto-Encoder (CVAE) model trained with MNIST to generate sample images.
|
||||
- [VAE-GAN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_vae_gan.py): VAE-GAN model trained with MNIST to generate sample images.
|
||||
- [Uncertainty Estimation](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_uncertainty.py): Evaluate uncertainty of model and data..
|
||||
|
||||
### Community
|
||||
As part of MindSpore, we are committed to creating an open and friendly environment.
|
||||
- [Gitee](https://gitee.com/mindspore/mindspore/issues): Report bugs or make feature requests.
|
|
@ -25,6 +25,9 @@ class ClassWrap:
|
|||
def __init__(self, cls):
|
||||
self._cls = cls
|
||||
self.bnn_loss_file = None
|
||||
self.__doc__ = cls.__doc__
|
||||
self.__name__ = cls.__name__
|
||||
self.__bases__ = cls.__bases__
|
||||
|
||||
def __call__(self, backbone, loss_fn, dnn_factor, bnn_factor):
|
||||
obj = self._cls(backbone, loss_fn, dnn_factor, bnn_factor)
|
||||
|
|
|
@ -31,7 +31,7 @@ class ConditionalVAE(Cell):
|
|||
|
||||
Note:
|
||||
When define the encoder and decoder, the shape of the encoder's output tensor and decoder's input tensor
|
||||
should be :math:`(N, hidden_size)`.
|
||||
should be :math:`(N, hidden\_size)`.
|
||||
The latent_size should be less than or equal to the hidden_size.
|
||||
|
||||
Args:
|
||||
|
@ -42,8 +42,8 @@ class ConditionalVAE(Cell):
|
|||
num_classes(int): The number of classes.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - the same shape as the input of encoder.
|
||||
- **input_y** (Tensor) - the tensor of the target data, the shape is :math:`(N, 1)`.
|
||||
- **input_x** (Tensor) - the same shape as the input of encoder, the shape is :math:`(N, C, H, W)`.
|
||||
- **input_y** (Tensor) - the tensor of the target data, the shape is :math:`(N,)`.
|
||||
|
||||
Outputs:
|
||||
- **output** (tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).
|
||||
|
@ -99,7 +99,7 @@ class ConditionalVAE(Cell):
|
|||
Randomly sample from latent space to generate sample.
|
||||
|
||||
Args:
|
||||
sample_y (Tensor): Define the label of sample, int tensor.
|
||||
sample_y (Tensor): Define the label of sample, int tensor, the shape is (generate_nums, ).
|
||||
generate_nums (int): The number of samples to generate.
|
||||
shape(tuple): The shape of sample, it should be (generate_nums, C, H, W) or (-1, C, H, W).
|
||||
|
||||
|
@ -121,8 +121,8 @@ class ConditionalVAE(Cell):
|
|||
Reconstruct sample from original data.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor to be reconstructed.
|
||||
y (Tensor): The label of the input tensor.
|
||||
x (Tensor): The input tensor to be reconstructed, the shape is (N, C, H, W).
|
||||
y (Tensor): The label of the input tensor, the shape is (N,).
|
||||
|
||||
Returns:
|
||||
Tensor, the reconstructed sample.
|
||||
|
|
|
@ -29,7 +29,7 @@ class VAE(Cell):
|
|||
|
||||
Note:
|
||||
When define the encoder and decoder, the shape of the encoder's output tensor and decoder's input tensor
|
||||
should be :math:`(N, hidden_size)`.
|
||||
should be :math:`(N, hidden\_size)`.
|
||||
The latent_size should be less than or equal to the hidden_size.
|
||||
|
||||
Args:
|
||||
|
@ -39,7 +39,7 @@ class VAE(Cell):
|
|||
latent_size(int): The size of the latent space.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - the same shape as the input of encoder.
|
||||
- **input** (Tensor) - the same shape as the input of encoder, the shape is :math:`(N, C, H, W)`.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).
|
||||
|
@ -106,7 +106,7 @@ class VAE(Cell):
|
|||
Reconstruct sample from original data.
|
||||
|
||||
Args:
|
||||
x (Tensor): The input tensor to be reconstructed.
|
||||
x (Tensor): The input tensor to be reconstructed, the shape is (N, C, H, W).
|
||||
|
||||
Returns:
|
||||
Tensor, the reconstructed sample.
|
||||
|
|
|
@ -37,7 +37,7 @@ class ELBO(Cell):
|
|||
|
||||
Inputs:
|
||||
- **input_data** (Tuple) - (recon_x(Tensor), x(Tensor), mu(Tensor), std(Tensor)).
|
||||
- **target_data** (Tensor) - the target tensor.
|
||||
- **target_data** (Tensor) - the target tensor of shape :math:`(N,)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, loss float tensor.
|
||||
|
|
|
@ -98,7 +98,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|||
return mnist_ds
|
||||
|
||||
|
||||
def test_svi_cave():
|
||||
def test_svi_cvae():
|
||||
# define the encoder and decoder
|
||||
encoder = Encoder(num_classes=10)
|
||||
decoder = Decoder()
|
||||
|
|
Loading…
Reference in New Issue