forked from mindspore-Ecosystem/mindspore
add test case for aware quantizaiton
This commit is contained in:
parent
60958d6b25
commit
652ab6c386
|
@ -38,14 +38,14 @@ class BatchNormFold2GpuKernel : public GpuKernel {
|
|||
|
||||
~BatchNormFold2GpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
|
@ -66,7 +66,7 @@ class BatchNormFold2GpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
@ -98,9 +98,9 @@ class BatchNormFold2GpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitResource() { cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle(); }
|
||||
void InitResource() override { cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle(); }
|
||||
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
size_t input_size = batch_size_ * channel_ * height_ * width_ * sizeof(T);
|
||||
size_t weight_size = channel_ * sizeof(T);
|
||||
input_size_list_.push_back(input_size);
|
||||
|
|
|
@ -38,14 +38,14 @@ class BatchNormFold2GradGpuKernel : public GpuKernel {
|
|||
|
||||
~BatchNormFold2GradGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
|
@ -88,7 +88,7 @@ class BatchNormFold2GradGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
@ -120,9 +120,9 @@ class BatchNormFold2GradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitResource() { cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle(); }
|
||||
void InitResource() override { cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle(); }
|
||||
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
size_t input_size = batch_size_ * channel_ * height_ * width_ * sizeof(T);
|
||||
size_t weight_size = channel_ * sizeof(T);
|
||||
size_t workspace_size = batch_size_ * channel_ * sizeof(T);
|
||||
|
|
|
@ -46,14 +46,14 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
|
||||
~BatchNormFoldGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
(void)workspace;
|
||||
auto x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto mean = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
|
@ -104,7 +104,7 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 4) {
|
||||
|
@ -152,7 +152,7 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
// x, mean, variance, current_step
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(output_size_);
|
||||
|
@ -169,7 +169,7 @@ class BatchNormFoldGpuKernel : public GpuKernel {
|
|||
workspace_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
void InitResource() {
|
||||
void InitResource() override {
|
||||
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&x_desc_), "Create x desc failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&scale_bias_mean_var_desc_), "Create para desc failed");
|
||||
|
|
|
@ -42,11 +42,12 @@ class BatchNormFoldGradGpuKernel : public GpuKernel {
|
|||
width_(0) {}
|
||||
~BatchNormFoldGradGpuKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
(void)workspace;
|
||||
// 'd_batch_mean', 'd_batch_std', 'x', 'batch_mean', 'batch_std', 'current_step'
|
||||
T *d_batch_mean = GetDeviceAddress<T>(inputs, 0);
|
||||
|
@ -92,7 +93,8 @@ class BatchNormFoldGradGpuKernel : public GpuKernel {
|
|||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 6) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but BatchNormFoldGrad GpuKernel OP needs 6 input.";
|
||||
|
@ -128,7 +130,7 @@ class BatchNormFoldGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
// 'd_batch_mean', 'd_batch_std', 'x', 'batch_mean', 'batch_std', 'current_step'
|
||||
input_size_list_.push_back(channel_size_);
|
||||
input_size_list_.push_back(channel_size_);
|
||||
|
|
|
@ -30,11 +30,11 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
CorrectionMulGpuKernel() : batch_size_(0), channel_(0), height_(0), width_(0) {}
|
||||
~CorrectionMulGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
auto *weight = GetDeviceAddress<T>(inputs, 0);
|
||||
auto *gamma = GetDeviceAddress<T>(inputs, 1);
|
||||
auto *running_std = GetDeviceAddress<T>(inputs, 2);
|
||||
|
@ -44,7 +44,7 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
@ -69,7 +69,7 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
size_t input_size = batch_size_ * channel_ * height_ * width_ * sizeof(T);
|
||||
size_t weight_size = batch_size_ * sizeof(T);
|
||||
input_size_list_.push_back(input_size); // weight
|
||||
|
@ -79,7 +79,7 @@ class CorrectionMulGpuKernel : public GpuKernel {
|
|||
output_size_list_.push_back(input_size);
|
||||
workspace_size_list_.push_back(workspace_size);
|
||||
}
|
||||
void InitResource() {}
|
||||
void InitResource() override {}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {}
|
||||
|
|
|
@ -30,11 +30,12 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
CorrectionMulGradGpuKernel() : batch_size_(0), channel_(0), height_(0), width_(0) {}
|
||||
~CorrectionMulGradGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const { return workspace_size_list_; }
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) {
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
auto *d_out = GetDeviceAddress<T>(inputs, 0);
|
||||
auto *weight = GetDeviceAddress<T>(inputs, 1);
|
||||
auto *gamma = GetDeviceAddress<T>(inputs, 2);
|
||||
|
@ -49,7 +50,8 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) {
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
@ -74,7 +76,7 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() {
|
||||
void InitSizeLists() override {
|
||||
size_t input_size = batch_size_ * channel_ * height_ * width_ * sizeof(T);
|
||||
size_t weight_size = batch_size_ * sizeof(T);
|
||||
input_size_list_.push_back(input_size); // d_out
|
||||
|
@ -85,7 +87,7 @@ class CorrectionMulGradGpuKernel : public GpuKernel {
|
|||
output_size_list_.push_back(weight_size); // d_gamma
|
||||
workspace_size_list_.push_back(input_size); // tmp d_out * weight
|
||||
}
|
||||
void InitResource() {}
|
||||
void InitResource() override {}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {}
|
||||
|
|
|
@ -369,7 +369,7 @@ class HSigmoid(Cell):
|
|||
Hard sigmoid is defined as:
|
||||
|
||||
.. math::
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \ftac{2 * x_{i} + 5}{10})),
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{2 * x_{i} + 5}{10})),
|
||||
|
||||
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
|
||||
|
||||
|
|
|
@ -319,7 +319,7 @@ class HSigmoid(PrimitiveWithInfer):
|
|||
Hard sigmoid is defined as:
|
||||
|
||||
.. math::
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \ftac{2 * x_{i} + 5}{10})),
|
||||
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{2 * x_{i} + 5}{10})),
|
||||
|
||||
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
|
||||
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.BatchNormFold2(100000)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, beta, gamma, batch_std, batch_mean, running_std, running_mean, current_step):
|
||||
return self.op(x, beta, gamma, batch_std, batch_mean, running_std, running_mean, current_step)
|
||||
|
||||
|
||||
class Net_gnd(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net_gnd, self).__init__()
|
||||
self.conv_mul = P.ConvMul(freeze_bn=100000)
|
||||
self.correct_add = P.CorrectionAdd(freeze_bn=100000)
|
||||
self.add_fold = P.AddFold()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, beta, gamma, batch_std, batch_mean, running_std, running_mean, current_step):
|
||||
out = self.conv_mul(x, batch_std, running_std, current_step)
|
||||
out = self.correct_add(out, gamma, batch_std, batch_mean,
|
||||
running_std, running_mean, current_step)
|
||||
out = self.add_fold(out, beta, gamma, batch_std, batch_mean)
|
||||
return out
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnrom_fold2():
|
||||
net = Net()
|
||||
c = 64
|
||||
freeze_bn = 100000
|
||||
x = np.random.uniform(-1, 1, size=[3, c, 32, 32]).astype('float32')
|
||||
beta = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
gamma = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
batch_std = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
batch_mean = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
running_std = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
running_mean = np.random.uniform(1, 2, size=[c]).astype('float32')
|
||||
current_step = np.array([0]).astype('int32')
|
||||
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean),
|
||||
Tensor(running_std), Tensor(running_mean), Tensor(current_step))
|
||||
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1,
|
||||
1) if current_step >= freeze_bn else
|
||||
x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
|
||||
1))
|
||||
error = np.ones(shape=expect.shape) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(diff > error * -1)
|
||||
|
||||
current_step = np.array([100000]).astype('int32')
|
||||
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std),
|
||||
Tensor(running_mean), Tensor(current_step))
|
||||
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1,
|
||||
1) if current_step >= freeze_bn else
|
||||
x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
|
||||
1))
|
||||
error = np.ones(shape=expect.shape) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(diff > error * -1)
|
|
@ -0,0 +1,96 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.BatchNormFoldGrad(freeze_bn=10)
|
||||
|
||||
@ms_function
|
||||
def construct(self, d_batch_mean, d_batch_std, x, batch_mean, batch_std, current_step):
|
||||
dx = self.op(d_batch_mean, d_batch_std, x, batch_mean, batch_std, current_step)
|
||||
return dx
|
||||
|
||||
|
||||
def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std):
|
||||
n = x.shape[0] * x.shape[2] * x.shape[3]
|
||||
dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * (
|
||||
x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n
|
||||
return dx
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold_grad1():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[3, c, 32, 32]).astype('float32')
|
||||
d_batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
d_batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([0]).astype('int32')
|
||||
dx = net(Tensor(d_batch_mean), Tensor(d_batch_std), Tensor(x), Tensor(batch_mean), Tensor(batch_std),
|
||||
Tensor(current_step))
|
||||
expect = np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std)
|
||||
assert np.allclose(dx.asnumpy(), expect, rtol=1.e-7, atol=1.e-7)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold_grad2():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[1, c, 256, 256]).astype('float32')
|
||||
d_batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
d_batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([0]).astype('int32')
|
||||
dx = net(Tensor(d_batch_mean), Tensor(d_batch_std), Tensor(x), Tensor(batch_mean), Tensor(batch_std),
|
||||
Tensor(current_step))
|
||||
expect = np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std)
|
||||
assert np.allclose(dx.asnumpy(), expect, rtol=1.e-7, atol=1.e-7)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold_grad_freeze():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[3, c, 32, 32]).astype('float32')
|
||||
d_batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
d_batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
batch_std = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([10]).astype('int32')
|
||||
dx = net(Tensor(d_batch_mean), Tensor(d_batch_std), Tensor(x), Tensor(batch_mean), Tensor(batch_std),
|
||||
Tensor(current_step))
|
||||
expect = np.zeros_like(x)
|
||||
assert np.allclose(dx.asnumpy(), expect, rtol=1.e-7, atol=1.e-7)
|
|
@ -0,0 +1,116 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.BatchNormFold(freeze_bn=10)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, mean, variance, current_step):
|
||||
a, b, c, d = self.op(x, mean, variance, current_step)
|
||||
return a, b, c, d
|
||||
|
||||
|
||||
def np_result(x, mean, var, momentum, epsilon):
|
||||
np_mean = x.mean(axis=(0, 2, 3))
|
||||
np_var = x.var(axis=(0, 2, 3))
|
||||
n = x.shape[0] * x.shape[2] * x.shape[3]
|
||||
mean_update = momentum * np_mean + (1 - momentum) * mean
|
||||
var_update = momentum * np_var * n / (n - 1) + (1 - momentum) * var
|
||||
np_var = np.sqrt(np_var + epsilon)
|
||||
delay_mean = mean.copy()
|
||||
delay_std = np.sqrt(var + epsilon)
|
||||
return np_mean, np_var, mean_update, var_update, delay_mean, delay_std
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[3, c, 32, 32]).astype('float32')
|
||||
mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
variance = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([0]).astype('int32')
|
||||
ms_mean = Tensor(mean)
|
||||
ms_var = Tensor(variance)
|
||||
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
|
||||
Tensor(current_step))
|
||||
|
||||
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
|
||||
assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(ms_var.asnumpy(), expect4, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_mean.asnumpy(), expect5, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_std.asnumpy(), expect6, rtol=1.e-7, atol=1.e-5)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold2():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[3, c, 512, 512]).astype('float32')
|
||||
mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
variance = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([0]).astype('int32')
|
||||
ms_mean = Tensor(mean)
|
||||
ms_var = Tensor(variance)
|
||||
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
|
||||
Tensor(current_step))
|
||||
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
|
||||
assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_mean.asnumpy(), expect5, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_std.asnumpy(), expect6, rtol=1.e-7, atol=1.e-5)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_batchnorm_fold_freeze():
|
||||
net = Net()
|
||||
c = 64
|
||||
x = np.random.uniform(1, 10, size=[3, c, 32, 32]).astype('float32')
|
||||
mean = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
variance = np.random.uniform(1, 10, size=[c]).astype('float32')
|
||||
current_step = np.array([10]).astype('int32')
|
||||
ms_mean = Tensor(mean)
|
||||
ms_var = Tensor(variance)
|
||||
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
|
||||
Tensor(current_step))
|
||||
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
|
||||
assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(ms_var.asnumpy(), variance, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_mean.asnumpy(), expect5, rtol=1.e-7, atol=1.e-5)
|
||||
assert np.allclose(delay_std.asnumpy(), expect6, rtol=1.e-7, atol=1.e-5)
|
|
@ -14,10 +14,10 @@
|
|||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import os
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op_w = P.CorrectionMulGrad()
|
||||
|
||||
@ms_function
|
||||
def construct(self, dy, x, batch_std, running_std):
|
||||
dx, d_batch_std = self.op_w(dy, x, batch_std, running_std)
|
||||
return dx, d_batch_std
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_correction_mul_grad():
|
||||
net = Net()
|
||||
co, ci, h, w = 64, 1, 32, 32
|
||||
dout = np.random.uniform(-0.1, 0.1, size=[co, ci, h, w]).astype('float32')
|
||||
x = np.random.uniform(1, 1, size=[co, ci, h, w]).astype('float32')
|
||||
batch_std = np.random.uniform(1, 10, size=[co]).astype('float32')
|
||||
running_std = np.random.uniform(1, 10, size=[co]).astype('float32')
|
||||
output = net(Tensor(dout), Tensor(x), Tensor(batch_std), Tensor(running_std))
|
||||
expect = [0, 0]
|
||||
expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1)))
|
||||
expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std)
|
||||
for i, v in enumerate(output):
|
||||
assert (np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5))
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='GPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = P.CorrectionMul()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, batch_var, moving_var):
|
||||
return self.op(x, batch_var, moving_var)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_correction_mul():
|
||||
net = Net()
|
||||
co = 64
|
||||
x = np.random.uniform(-1, 1, size=[co, 64, 32, 32]).astype('float32')
|
||||
bv = np.random.uniform(1, 2, size=[co]).astype('float32')
|
||||
mv = np.random.uniform(1, 2, size=[co]).astype('float32')
|
||||
output = net(Tensor(x), Tensor(bv), Tensor(mv))
|
||||
expect = x * np.reshape(bv, (co, 1, 1, 1)) / np.reshape(mv, (co, 1, 1, 1))
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(diff > error * -1)
|
||||
assert (output.shape() == expect.shape)
|
Loading…
Reference in New Issue