Add gnn aggregator and its ut

This commit is contained in:
hanyuanai 2020-04-27 08:34:00 +00:00
parent 1f2ca74cd1
commit 64f824e4fc
2 changed files with 275 additions and 0 deletions

222
tests/st/gnn/aggregator.py Normal file
View File

@ -0,0 +1,222 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Aggregator."""
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore._extends import cell_attr_register
from mindspore import Tensor, Parameter
from mindspore.common.initializer import initializer
from mindspore._checkparam import check_int_positive, check_bool
from mindspore.nn.layer.activation import get_activation
class GNNFeatureTransform(nn.Cell):
r"""
The GNN featuren transform layer for input.
Applies linear transformation for the input feature. This layer implements the operation as:
.. math::
\text{outputs} = \text{inputs} * \text{kernel} + \text{bias},
where :math:`\text{activation}` is the activation function passed as the activation
argument (if passed in),:math:`\text{activation}` is a weight matrix with the same
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
with the same data type as the inputs created by the layer (only if has_bias is True).
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
Raises:
ValueError: If weight_init or bias_init shape is incorrect.
Inputs:
- **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`.
Outputs:
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
Examples:
>>> net = nn.Dense(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
"""
@cell_attr_register(attrs=['has_bias', 'activation'])
def __init__(self,
in_channels,
out_channels,
weight_init='normal',
bias_init='zeros',
has_bias=True):
super(GNNFeatureTransform, self).__init__()
self.in_channels = check_int_positive(in_channels)
self.out_channels = check_int_positive(out_channels)
self.has_bias = check_bool(has_bias)
if isinstance(weight_init, Tensor):
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
weight_init.shape()[1] != in_channels:
raise ValueError("weight_init shape error")
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
if self.has_bias:
if isinstance(bias_init, Tensor):
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
raise ValueError("bias_init shape error")
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
self.matmul = P.MatMul(transpose_b=True)
self.bias_add = P.BiasAdd()
def construct(self, x):
tensor_shape = F.shape(x)
input_feature = F.reshape(x, (tensor_shape[0] * tensor_shape[1], tensor_shape[2]))
output = self.matmul(input_feature, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels))
return output
def extend_repr(self):
str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
if self.has_bias:
str_info = str_info + ', bias={}'.format(self.bias)
return str_info
class _BaseAggregator(nn.Cell):
"""
Base Aggregator of GNN
Args:
feature_in_dim (int): Node or edge input feature dim.
feature_out_dim (int): Node or edge outpout feature dim.
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
Examples:
>>> class MyAggregator(_BaseAggregator):
>>> def __init__(self):
>>> super(MyAggregator, self).__init__(self, feature_in_dim, feature_out_dim)
>>> self.reduce_mean = P.ReduceSum()
>>>
>>> def construct(self, x):
>>> return self.reduce_mean(x, 1)
"""
def __init__(self,
feature_in_dim,
feature_out_dim,
use_fc=True,
weight_init="normal",
bias_init="zeros",
has_bias=True,
dropout_ratio=None,
activation=None):
super(_BaseAggregator, self).__init__()
self.in_dim = feature_in_dim
self.out_dim = feature_out_dim
self.use_fc = use_fc
if self.use_fc:
self.weight_init = weight_init
self.bias_init = bias_init
self.has_bias = has_bias
self.fc = GNNFeatureTransform(self.in_dim,
self.out_dim,
weight_init=self.weight_init,
bias_init=self.bias_init,
has_bias=self.has_bias)
self.dropout_ratio = dropout_ratio
if self.dropout_ratio is not None:
self.dropout = nn.Dropout(keep_prob=self.dropout_ratio)
self.dropout_flag = self.dropout_ratio is not None
self.activation = get_activation(activation)
self.activation_flag = self.activation is not None
def construct(self, **kward):
"""Must be overridden by all subclasses."""
raise NotImplementedError
class MeanAggregator(_BaseAggregator):
"""
Mean Aggregator of GNN
Args:
feature_in_dim (int): Node or edge input feature dim.
feature_out_dim (int): Node or edge outpout feature dim.
use_fc (bool): Specifies whether a linear transformation before message is aggregated. Default: True
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
dropout_ratio (float): The keep rate of dropout layer, greater than 0 and less equal than 1. Default: None.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
Examples:
>>> net = MeanAggregator(32, 64, activation="relu", dropout=0.5)
>>> input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtypy=np.float32))
>>> output = net(input_data)
"""
def __init__(self,
feature_in_dim,
feature_out_dim,
use_fc=True,
weight_init="normal",
bias_init="zeros",
has_bias=True,
dropout_ratio=None,
activation=None):
super(MeanAggregator, self).__init__(
feature_in_dim,
feature_out_dim,
use_fc=True,
weight_init="normal",
bias_init="zeros",
has_bias=True,
dropout_ratio=None,
activation=None)
self.reduce_mean = P.ReduceMean(keep_dims=False)
def construct(self, input_feature):
if self.use_fc:
input_feature = self.fc(input_feature)
if self.dropout_flag:
input_feature = self.dropout(input_feature)
if self.activation_flag:
input_feature = self.activation(input_feature)
output_feature = self.reduce_mean(input_feature, 1)
return output_feature

View File

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test gnn aggregator."""
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.common.api import _executor
import mindspore.ops.composite as C
from aggregator import MeanAggregator
context.set_context(mode=context.GRAPH_MODE)
class MeanAggregatorGrad(nn.Cell):
"""Backward of MeanAggregator"""
def __init__(self, network):
super(MeanAggregatorGrad, self).__init__()
self.grad_op = C.grad_all_with_sens
self.network = network
def construct(self, x, sens):
grad_op = self.grad_op(self.network)(x, sens)
return grad_op
def test_MeanAggregator():
"""Compile MeanAggregator forward graph"""
aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
_executor.compile(aggregator, input_data)
def test_MeanAggregator_grad():
"""Compile MeanAggregator backward graph"""
aggregator = MeanAggregator(32, 64, activation="relu", dropout_ratio=0.5)
input_data = Tensor(np.array(np.random.rand(32, 3, 32), dtype=np.float32))
sens = Tensor(np.ones([32, 64]).astype(np.float32))
grad_op = MeanAggregatorGrad(aggregator)
_executor.compile(grad_op, input_data, sens)