forked from mindspore-Ecosystem/mindspore
!792 [Model][bert] Modify ST test script of bert model.
Merge pull request !792 from wsc/lossscale_script
This commit is contained in:
commit
516e16ded0
|
@ -78,7 +78,7 @@ It contains of parameters of BERT model and options for training, which is set i
|
|||
### Options:
|
||||
```
|
||||
Pre-Training:
|
||||
bert_network version of BERT model: base | large, default is base
|
||||
bert_network version of BERT model: base | nezha, default is base
|
||||
loss_scale_value initial value of loss scale: N, default is 2^32
|
||||
scale_factor factor used to update loss scale: N, default is 2
|
||||
scale_window steps for once updatation of loss scale: N, default is 1000
|
||||
|
|
|
@ -26,30 +26,36 @@ cfg = edict({
|
|||
'optimizer': 'Lamb',
|
||||
'AdamWeightDecayDynamicLR': edict({
|
||||
'learning_rate': 3e-5,
|
||||
'end_learning_rate': 0.0,
|
||||
'end_learning_rate': 1e-7,
|
||||
'power': 5.0,
|
||||
'weight_decay': 1e-5,
|
||||
'eps': 1e-6,
|
||||
}),
|
||||
'Lamb': edict({
|
||||
'start_learning_rate': 3e-5,
|
||||
'end_learning_rate': 0.0,
|
||||
'end_learning_rate': 1e-7,
|
||||
'power': 10.0,
|
||||
'warmup_steps': 10000,
|
||||
'weight_decay': 0.01,
|
||||
'eps': 1e-6,
|
||||
'decay_filter': lambda x: False,
|
||||
}),
|
||||
'Momentum': edict({
|
||||
'learning_rate': 2e-5,
|
||||
'momentum': 0.9,
|
||||
}),
|
||||
})
|
||||
|
||||
'''
|
||||
Including two kinds of network: \
|
||||
base: Goole BERT-base(the base version of BERT model).
|
||||
large: BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which introduced a improvement of \
|
||||
Functional Relative Posetional Encoding as an effective positional encoding scheme).
|
||||
'''
|
||||
if cfg.bert_network == 'base':
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=16,
|
||||
batch_size=32,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
vocab_size=21128,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
|
@ -66,13 +72,13 @@ if cfg.bert_network == 'base':
|
|||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
)
|
||||
else:
|
||||
if cfg.bert_network == 'nezha':
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=16,
|
||||
batch_size=32,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
vocab_size=21128,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=12,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
|
|
|
@ -31,7 +31,7 @@ def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", e
|
|||
files = os.listdir(data_dir)
|
||||
data_files = []
|
||||
for file_name in files:
|
||||
data_files.append(data_dir+file_name)
|
||||
data_files.append(os.path.join(data_dir, file_name))
|
||||
ds = de.TFRecordDataset(data_files, schema_dir,
|
||||
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
|
||||
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
|
||||
|
|
|
@ -16,17 +16,15 @@
|
|||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the scipt as: "
|
||||
echo "sh run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH MINDSPORE_PATH"
|
||||
echo "for example: sh run_distribute_pretrain.sh 8 40 /path/zh-wiki/ /path/Schema.json /path/hccl.json /path/mindspore"
|
||||
echo "sh run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH"
|
||||
echo "for example: sh run_distribute_pretrain.sh 8 40 /path/zh-wiki/ /path/Schema.json /path/hccl.json"
|
||||
echo "It is better to use absolute path."
|
||||
echo "=============================================================================================================="
|
||||
|
||||
EPOCH_SIZE=$2
|
||||
DATA_DIR=$3
|
||||
SCHEMA_DIR=$4
|
||||
MINDSPORE_PATH=$6
|
||||
|
||||
export PYTHONPATH=$MINDSPORE_PATH/build/package:$PYTHONPATH
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$5
|
||||
export RANK_SIZE=$1
|
||||
|
||||
|
|
|
@ -16,16 +16,14 @@
|
|||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the scipt as: "
|
||||
echo "sh run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_PATH"
|
||||
echo "for example: sh run_standalone_pretrain.sh 0 40 /path/zh-wiki/ /path/Schema.json /path/mindspore"
|
||||
echo "sh run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR"
|
||||
echo "for example: sh run_standalone_pretrain.sh 0 40 /path/zh-wiki/ /path/Schema.json"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
DEVICE_ID=$1
|
||||
EPOCH_SIZE=$2
|
||||
DATA_DIR=$3
|
||||
SCHEMA_DIR=$4
|
||||
MINDSPORE_PATH=$5
|
||||
export PYTHONPATH=$MINDSPORE_PATH/build/package:$PYTHONPATH
|
||||
|
||||
python run_pretrain.py \
|
||||
--distribute="false" \
|
||||
|
|
|
@ -135,9 +135,10 @@ class ModelCallback(Callback):
|
|||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs[0])
|
||||
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0])
|
||||
self.overflow_list.append(cb_params.net_outputs[1])
|
||||
self.lossscale_list.append(cb_params.net_outputs[2])
|
||||
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
|
@ -192,7 +193,11 @@ def test_bert_tdt():
|
|||
if count == scale_window:
|
||||
count = 0
|
||||
assert callback.lossscale_list[i] == callback.lossscale_list[i - 1] * Tensor(2.0, mstype.float32)
|
||||
|
||||
# assertion occurs while the loss value is wrong
|
||||
loss_value = np.array(callback.loss_list)
|
||||
expect_value = [12.1918125, 11.966035, 11.972114, 11.982671, 11.976399, 12.616986, 12.180658, 12.850562, 12.415608, 12.640145]
|
||||
print("loss value: {}".format(loss_value))
|
||||
assert np.allclose(loss_value, expect_value, 0.00001, 0.00001)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
||||
|
|
|
@ -1,190 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""train bert network without lossscale"""
|
||||
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore import log as logger
|
||||
|
||||
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
||||
|
||||
def get_config(version='base', batch_size=1):
|
||||
"""get config"""
|
||||
if version == 'base':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32)
|
||||
elif version == 'large':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16)
|
||||
elif version == 'large_mixed':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32)
|
||||
else:
|
||||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
||||
|
||||
def me_de_train_dataset():
|
||||
"""test me de train dataset"""
|
||||
# apply repeat operations
|
||||
repeat_count = 1
|
||||
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
||||
# apply batch operations
|
||||
batch_size = 16
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
ds = ds.repeat(repeat_count)
|
||||
return ds
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
"""weight variable"""
|
||||
np.random.seed(1)
|
||||
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
|
||||
return Tensor(ones)
|
||||
|
||||
|
||||
class ModelCallback(Callback):
|
||||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs.asnumpy()[0])
|
||||
logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_bert_tdt():
|
||||
"""test bert tdt"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
||||
context.set_context(enable_task_sink=True)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
parallel_callback = ModelCallback()
|
||||
ds = me_de_train_dataset()
|
||||
version = os.getenv('VERSION', 'large')
|
||||
batch_size = int(os.getenv('BATCH_SIZE', '16'))
|
||||
config = get_config(version=version, batch_size=batch_size)
|
||||
netwithloss = BertNetworkWithLoss(config, True)
|
||||
optimizer = Momentum(netwithloss.trainable_params(), learning_rate=2e-5, momentum=0.9)
|
||||
netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
|
||||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
value = param.default_input
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
if name.split('.')[-1] in ['weight']:
|
||||
if name.split('.')[-3] in ['cls2']:
|
||||
logger.info("***************** BERT param name is 1 {}".format(name))
|
||||
param.default_input = weight_variable(value.asnumpy().shape)
|
||||
else:
|
||||
logger.info("***************** BERT param name is 2 {}".format(name))
|
||||
tempshape = value.asnumpy().shape
|
||||
shape = (tempshape[1], tempshape[0])
|
||||
weight_value = weight_variable(shape).asnumpy()
|
||||
param.default_input = Tensor(np.transpose(weight_value, [1, 0]))
|
||||
else:
|
||||
logger.info("***************** BERT param name is 3 {}".format(name))
|
||||
param.default_input = weight_variable(value.asnumpy().shape)
|
||||
model.train(ds.get_repeat_count(), ds, callbacks=parallel_callback, dataset_sink_mode=False)
|
||||
loss_value = np.array(parallel_callback.loss_list)
|
||||
expect_out = [12.19179, 11.965041, 11.969687, 11.97815, 11.969171, 12.603289, 12.165594,
|
||||
12.824818, 12.38842, 12.604046]
|
||||
logger.info("expected loss value output: {}".format(expect_out))
|
||||
assert np.allclose(loss_value, expect_out, 0.00001, 0.00001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
Loading…
Reference in New Issue