!334 Add parallel operator for LayerNorm

Merge pull request !334 from yangzhenzhang/layernorm
This commit is contained in:
mindspore-ci-bot 2020-04-15 20:06:03 +08:00 committed by Gitee
commit 49b8a0848c
14 changed files with 745 additions and 193 deletions

View File

@ -65,7 +65,7 @@ double OperatorCost::GetMemoryCost(const std::vector<TensorInfo>& inputs,
// return the per device communication cost in the forward phase.
double MatMulCost::GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t&) const {
int32_t) const {
TensorInfo input0 = inputs[0];
TensorInfo output0 = outputs[0];
Shape input0_shape = input0.shape();
@ -81,7 +81,7 @@ double MatMulCost::GetForwardCommCost(const std::vector<TensorInfo>& inputs, con
// return the per device communication cost in the forward phase.
double MatMulCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
// In backward phase, the communication cost is incurred only when tensor B is a Parameter and tensor B does not
// fully utilize all devices
double result = 0.0;
@ -108,7 +108,7 @@ double MatMulCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, co
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double MatMulCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs, const int32_t&) const {
const std::vector<TensorInfo>& outputs, int32_t) const {
// In forward phase, the compuatation cost = slice(A) + slice(B) + (0 or 1) allreduce(slice(C))
double result = 0.0;
TensorInfo output0 = outputs[0];
@ -127,7 +127,7 @@ double MatMulCost::GetForwardComputationCost(const std::vector<TensorInfo>& inpu
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double MatMulCost::GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
// In backward phase, the computation cost = (0 or 1) allreduce(slice(B))
double result = 0.0;
if (is_parameter_[1]) {
@ -152,14 +152,14 @@ double MatMulCost::GetBackwardComputationCost(const std::vector<TensorInfo>& inp
// Return the per device communication cost in the forward phase.
double ActivationCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// ReLU is the element-wise operator, thus it does not need communication in the forward phase
return 0.0;
}
// Return the per device communication cost in the backward phase.
double ActivationCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_[0]) {
TensorInfo input1 = inputs[0];
@ -181,7 +181,7 @@ double ActivationCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double ActivationCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
TensorInfo input0_info = inputs[0];
Shape input0_slice_shape = input0_info.slice_shape();
return ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
@ -190,20 +190,19 @@ double ActivationCost::GetForwardComputationCost(const std::vector<TensorInfo>&
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double ActivationCost::GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
return 0.0;
}
// Return the per device communication cost in the forward phase.
double SoftmaxCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double SoftmaxCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
// In the forward phase, the communication cost = 0
return 0.0;
}
// Return the per device communication cost in the backward phase.
double SoftmaxCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_[0]) {
TensorInfo input1 = inputs[0];
@ -225,7 +224,7 @@ double SoftmaxCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, c
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double SoftmaxCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// In the forward phase, the computation cost = slice(A)
TensorInfo input0 = inputs[0];
Shape input0_slice_shape = input0.slice_shape();
@ -235,21 +234,20 @@ double SoftmaxCost::GetForwardComputationCost(const std::vector<TensorInfo>& inp
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double SoftmaxCost::GetBackwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
return 0.0;
}
// return the per device communication cost in the forward phase.
double TmpIdentityCost::GetForwardCommCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&, const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
// Identity is the element-wise operator, thus it does not need communication in the forward phase
return 0.0;
}
// return the per device communication cost in the backward phase.
double TmpIdentityCost::GetBackwardCommCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&, const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
// Identity is the element-wise operator, thus it does not need communication in the backward phase
return 0.0;
}
@ -257,16 +255,14 @@ double TmpIdentityCost::GetBackwardCommCost(const std::vector<mindspore::paralle
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double TmpIdentityCost::GetForwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
return 0.0;
}
// Return the per device computation cost in the backward phase. The cost is calculated according to the bytes
// this operator uses
double TmpIdentityCost::GetBackwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
return 0.0;
}
@ -277,7 +273,7 @@ double TmpIdentityCost::GetMemoryCost(const std::vector<TensorInfo>&, const std:
double BatchParallelCost::GetForwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>& inputs,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
int32_t) const {
double cost = 0.0;
for (size_t i = 0; i < inputs.size(); ++i) {
cost += ListProduct(inputs[i].slice_shape()) * static_cast<double>(inputs_type_lengths_[i]);
@ -287,20 +283,19 @@ double BatchParallelCost::GetForwardComputationCost(const std::vector<mindspore:
double BatchParallelCost::GetBackwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
int32_t) const {
return 0.0;
}
// return the per device communication cost in the forward phase.
double PReLUCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double PReLUCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
// prelu does not need communication in the forward phase
return 0.0;
}
// return the per device communication cost in the backward phase.
double PReLUCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_[1]) {
TensorInfo input1 = inputs[1];
@ -323,7 +318,7 @@ double PReLUCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, con
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double PReLUCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// In forward phase, the computation cost = slice(A) + slice(B)
Shape input0_slice_shape = inputs[0].slice_shape();
Shape input1_slice_shape = inputs[1].slice_shape();
@ -336,7 +331,7 @@ double PReLUCost::GetForwardComputationCost(const std::vector<TensorInfo>& input
// this operator uses
double PReLUCost::GetBackwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>& inputs,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
// In backward phase, the computation cost = (0 or 1) allreduce(slice(B))
double result = 0.0;
if (is_parameter_[1]) {
@ -360,15 +355,13 @@ double PReLUCost::GetBackwardComputationCost(const std::vector<mindspore::parall
}
// return the per device communication cost in the forward phase.
double OneHotCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double OneHotCost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
// onehot does not need communication in the forward phase
return 0.0;
}
// return the per device communication cost in the backward phase.
double OneHotCost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double OneHotCost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
// onehot does not need communication in the backward phase
return 0.0;
}
@ -376,7 +369,7 @@ double OneHotCost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double OneHotCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// In onehot's forward phase, the computation cost = slice(A)
Shape input0_slice_shape = inputs[0].slice_shape();
return ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
@ -385,20 +378,20 @@ double OneHotCost::GetForwardComputationCost(const std::vector<TensorInfo>& inpu
// Return the per device computation cost in the backward phase. The cost is calculated according to the bytes
// this operator uses
double OneHotCost::GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
return 0.0;
}
// return the per device communication cost in the forward phase.
double SoftmaxCrossEntropyWithLogitsCost::GetForwardCommCost(const std::vector<TensorInfo>&,
const std::vector<TensorInfo>&, const int32_t&) const {
const std::vector<TensorInfo>&, int32_t) const {
// SoftmaxCrossEntropyWithLogitsCost does not need communication in the forward phase
return 0.0;
}
// return the per device communication cost in the backward phase.
double SoftmaxCrossEntropyWithLogitsCost::GetBackwardCommCost(const std::vector<TensorInfo>&,
const std::vector<TensorInfo>&, const int32_t&) const {
const std::vector<TensorInfo>&, int32_t) const {
// SoftmaxCrossEntropyWithLogitsCost does not need communication in the backward phase
return 0.0;
}
@ -406,8 +399,7 @@ double SoftmaxCrossEntropyWithLogitsCost::GetBackwardCommCost(const std::vector<
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double SoftmaxCrossEntropyWithLogitsCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>&,
const int32_t&) const {
const std::vector<TensorInfo>&, int32_t) const {
// In forward phase, the computation cost = slice(A) + slice(B)
Shape input0_slice_shape = inputs[0].slice_shape();
Shape input1_slice_shape = inputs[1].slice_shape();
@ -419,14 +411,13 @@ double SoftmaxCrossEntropyWithLogitsCost::GetForwardComputationCost(const std::v
// Return the per device computation cost in the backward phase. The cost is calculated according to the bytes
// this operator uses
double SoftmaxCrossEntropyWithLogitsCost::GetBackwardComputationCost(const std::vector<TensorInfo>&,
const std::vector<TensorInfo>&,
const int32_t&) const {
const std::vector<TensorInfo>&, int32_t) const {
return 0.0;
}
// return the per device communication cost in the forward phase.
double ReshapeCost::GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const {
int32_t stage_id) const {
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
RankList dev_list = g_device_manager->GetDeviceListByStageId(stage_id);
@ -441,15 +432,14 @@ double ReshapeCost::GetForwardCommCost(const std::vector<TensorInfo>& inputs, co
}
// return the per device communication cost in the backward phase.
double ReshapeCost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double ReshapeCost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
return 0.0;
}
// Return the per device computation cost in the forward phase. The cost is calculated according to the bytes
// this operator uses
double ReshapeCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs, const int32_t& stage_id) const {
const std::vector<TensorInfo>& outputs, int32_t stage_id) const {
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
RankList dev_list = g_device_manager->GetDeviceListByStageId(stage_id);
@ -466,13 +456,12 @@ double ReshapeCost::GetForwardComputationCost(const std::vector<TensorInfo>& inp
// Return the per device computation cost in the backward phase. The cost is calculated according to the bytes
// this operator uses
double ReshapeCost::GetBackwardComputationCost(const std::vector<mindspore::parallel::TensorInfo>&,
const std::vector<mindspore::parallel::TensorInfo>&,
const int32_t&) const {
const std::vector<mindspore::parallel::TensorInfo>&, int32_t) const {
return 0.0;
}
double ArithmeticCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
double result;
result = ListProduct(inputs[0].slice_shape()) * static_cast<double>(inputs_type_lengths_[0]) +
ListProduct(inputs[1].slice_shape()) * static_cast<double>(inputs_type_lengths_[1]);
@ -480,7 +469,7 @@ double ArithmeticCost::GetForwardComputationCost(const std::vector<TensorInfo>&
}
double ArithmeticCost::GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
@ -515,7 +504,7 @@ double ArithmeticCost::GetBackwardComputationCost(const std::vector<TensorInfo>&
}
double ArithmeticCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
@ -550,7 +539,7 @@ double ArithmeticCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs
return result;
}
bool IsDataParallel(const Shape& shape, const Shape& slice_shape, const int32_t& stage_id) {
bool IsDataParallel(const Shape& shape, const Shape& slice_shape, int32_t stage_id) {
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
@ -560,7 +549,7 @@ bool IsDataParallel(const Shape& shape, const Shape& slice_shape, const int32_t&
}
double ReduceMethodCost::GetForwardCommCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs, const int32_t& stage_id) const {
const std::vector<TensorInfo>& outputs, int32_t stage_id) const {
double result = 0.0;
TensorInfo input0 = inputs[0];
TensorInfo output0 = outputs[0];
@ -571,7 +560,7 @@ double ReduceMethodCost::GetForwardCommCost(const std::vector<TensorInfo>& input
}
std::vector<int32_t> dim_list = input0.reduce_dim();
std::vector<int>::iterator pos;
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](const int32_t& index) {
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](int32_t index) {
return input0_shape[IntToSize(index)] != input0_slice_shape[IntToSize(index)];
});
if (pos != dim_list.end()) {
@ -582,7 +571,7 @@ double ReduceMethodCost::GetForwardCommCost(const std::vector<TensorInfo>& input
}
double ReduceMethodCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t& stage_id) const {
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_[0]) {
TensorInfo input_tensor_info = inputs[0];
@ -605,8 +594,7 @@ double ReduceMethodCost::GetBackwardCommCost(const std::vector<TensorInfo>& inpu
}
double ReduceMethodCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const {
const std::vector<TensorInfo>& outputs, int32_t stage_id) const {
double result = 0.0;
TensorInfo input0 = inputs[0];
TensorInfo output0 = outputs[0];
@ -615,7 +603,7 @@ double ReduceMethodCost::GetForwardComputationCost(const std::vector<TensorInfo>
Shape input0_shape = input0.shape();
if (!cross_batch_ || !IsDataParallel(input0_shape, input0_slice_shape, stage_id)) {
std::vector<int>::iterator pos;
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](const int32_t& index) {
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](int32_t index) {
return input0_shape[IntToSize(index)] != input0_slice_shape[IntToSize(index)];
});
if (pos != dim_list.end()) {
@ -628,8 +616,7 @@ double ReduceMethodCost::GetForwardComputationCost(const std::vector<TensorInfo>
}
double ReduceMeanCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const {
const std::vector<TensorInfo>& outputs, int32_t stage_id) const {
double result = 0.0;
TensorInfo input0 = inputs[0];
TensorInfo output0 = outputs[0];
@ -638,7 +625,7 @@ double ReduceMeanCost::GetForwardComputationCost(const std::vector<TensorInfo>&
Shape input0_shape = input0.shape();
if (!cross_batch_ || !IsDataParallel(input0_shape, input0_slice_shape, stage_id)) {
std::vector<int>::iterator pos;
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](const int32_t& index) {
pos = std::find_if(dim_list.begin(), dim_list.end(), [input0_shape, input0_slice_shape](int32_t index) {
return input0_shape[IntToSize(index)] != input0_slice_shape[IntToSize(index)];
});
if (pos != dim_list.end()) {
@ -651,7 +638,7 @@ double ReduceMeanCost::GetForwardComputationCost(const std::vector<TensorInfo>&
}
double DropOutCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
if (inputs.empty()) {
return 0.0;
}
@ -661,21 +648,20 @@ double DropOutCost::GetForwardComputationCost(const std::vector<TensorInfo>& inp
}
// return the per device communication cost in the forward phase.
double GatherV2Cost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
double GatherV2Cost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const {
// GatherV2Cost does not need communication in the forward phase
return 0.0;
}
// return the per device communication cost in the backward phase.
double GatherV2Cost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// GatherV2Cost does not need communication in the backward phase
return 0.0;
}
double GatherV2Cost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
// In forward phase, the computation cost = slice(A) + slice(B)
Shape input0_slice_shape = inputs[0].slice_shape();
Shape input1_slice_shape = inputs[1].slice_shape();
@ -685,8 +671,56 @@ double GatherV2Cost::GetForwardComputationCost(const std::vector<TensorInfo>& in
}
double GatherV2Cost::GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const {
int32_t) const {
return 0.0;
}
double LayerNormCost::GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_.size() != inputs.size()) {
MS_LOG(EXCEPTION) << "Invalid parameter size " << is_parameter_.size() << " for layer norm cost";
}
if (inputs_type_lengths_.size() != inputs.size()) {
MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size() << " for layer norm cost";
}
MS_EXCEPTION_IF_NULL(g_device_manager);
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
for (size_t index = 0; index < inputs.size(); ++index) {
if (is_parameter_[index]) {
TensorInfo tensor_info = inputs[index];
Shape shape = tensor_info.shape();
Shape slice_shape = tensor_info.slice_shape();
int32_t used_device_num = 1;
for (size_t i = 0; i < shape.size(); ++i) {
if (slice_shape[i] == 0) {
MS_LOG(EXCEPTION) << "Invalid slice shape " << ShapeToString(slice_shape);
}
used_device_num *= shape[i] / slice_shape[i];
}
if (total_device_num != IntToSize(used_device_num)) {
result += ListProduct(slice_shape) * static_cast<double>(inputs_type_lengths_[index]);
}
}
}
return result;
}
double LayerNormCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
int32_t) const {
double result = 0.0;
if (inputs_type_lengths_.size() != inputs.size()) {
MS_LOG(EXCEPTION) << "Invalid inputs type size " << inputs_type_lengths_.size() << " for layer norm cost";
}
for (size_t index = 0; index < inputs.size(); ++index) {
TensorInfo tensor_info = inputs[index];
Shape slice_shape = tensor_info.slice_shape();
result += ListProduct(slice_shape) * static_cast<double>(inputs_type_lengths_[index]);
}
return result;
}
} // namespace parallel
} // namespace mindspore

View File

@ -72,18 +72,18 @@ class OperatorCost {
// per device communication cost
virtual double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const = 0;
int32_t stage_id) const = 0;
virtual double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const = 0;
int32_t stage_id) const = 0;
virtual double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const = 0;
int32_t stage_id) const = 0;
// per device computation cost
virtual double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const = 0;
int32_t stage_id) const = 0;
virtual double GetForwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs, const int32_t& stage_id) const = 0;
const std::vector<TensorInfo>& outputs, int32_t stage_id) const = 0;
virtual double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs,
const std::vector<TensorInfo>& outputs, const int32_t& stage_id) const = 0;
const std::vector<TensorInfo>& outputs, int32_t stage_id) const = 0;
// per device PEAK memory cost in a training iteration
// Typically, the PEAK memory cost contributed by an operator is its output (if the output is parameter-invovled),
// plus necessary inputs.
@ -114,23 +114,23 @@ class MatMulCost : public OperatorCost {
// per device communication cost
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device computation cost
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using MatMulCostPtr = std::shared_ptr<MatMulCost>;
@ -141,21 +141,21 @@ class ActivationCost : public OperatorCost {
~ActivationCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using ActivationCostPtr = std::shared_ptr<ActivationCost>;
using TransposeCost = ActivationCost;
@ -168,21 +168,21 @@ class SoftmaxCost : public OperatorCost {
~SoftmaxCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t&) const override;
int32_t) const override;
};
using SoftmaxCostPtr = std::shared_ptr<SoftmaxCost>;
@ -193,21 +193,21 @@ class TmpIdentityCost : public OperatorCost {
~TmpIdentityCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device PEAK memory cost in a training iteration
double GetMemoryCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs) const override;
};
@ -220,25 +220,23 @@ class BatchParallelCost : public OperatorCost {
~BatchParallelCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using BatchParallelCostPtr = std::shared_ptr<BatchParallelCost>;
@ -249,27 +247,25 @@ class VirtualDatasetCost : public OperatorCost {
~VirtualDatasetCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
// per device PEAK memory cost in a training iteration
@ -286,29 +282,27 @@ class GeneratorBaseCost : public OperatorCost {
~GeneratorBaseCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
// Inputs vector is empty for generator ops.
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
// Generator ops don't have backward steps.
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
};
@ -322,23 +316,23 @@ class PReLUCost : public OperatorCost {
// per device communication cost
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device computation cost
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using PReLUCostPtr = std::shared_ptr<PReLUCost>;
@ -350,23 +344,23 @@ class OneHotCost : public OperatorCost {
// per device communication cost
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device computation cost
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using OneHotCostPtr = std::shared_ptr<OneHotCost>;
@ -378,23 +372,23 @@ class SoftmaxCrossEntropyWithLogitsCost : public OperatorCost {
// per device communication cost
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device computation cost
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using SoftmaxCrossEntropyWithLogitsCostPtr = std::shared_ptr<SoftmaxCrossEntropyWithLogitsCost>;
@ -407,27 +401,27 @@ class ReshapeCost : public OperatorCost {
// per device communication cost
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
// per device computation cost
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using ReshapeCostPtr = std::shared_ptr<ReshapeCost>;
@ -438,24 +432,22 @@ class ArithmeticCost : public OperatorCost {
~ArithmeticCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using ArithmeticCostPtr = std::shared_ptr<ArithmeticCost>;
using BiasAddCost = ArithmeticCost;
@ -468,21 +460,21 @@ class ReduceMethodCost : public OperatorCost {
~ReduceMethodCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
void set_cross_batch(bool cb) { cross_batch_ = cb; }
@ -499,7 +491,7 @@ class ReduceMeanCost : public ReduceMethodCost {
~ReduceMeanCost() override = default;
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
};
using ReduceMeanCostPtr = std::shared_ptr<ReduceMeanCost>;
@ -510,29 +502,27 @@ class GetNextCost : public OperatorCost {
~GetNextCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
// Inputs vector is empty for generator ops.
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
// Generator ops don't have backward steps.
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
};
@ -545,25 +535,51 @@ class DropOutCost : public OperatorCost {
~DropOutCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override;
int32_t) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
int32_t) const override {
return 0.0;
}
};
using DropOutCostPtr = std::shared_ptr<DropOutCost>;
class LayerNormCost : public OperatorCost {
public:
explicit LayerNormCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
LayerNormCost() : OperatorCost(true) {}
~LayerNormCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, int32_t) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
int32_t) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
int32_t) const override {
return 0.0;
}
};
@ -577,21 +593,21 @@ class GatherV2Cost : public OperatorCost {
~GatherV2Cost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override;
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t&) const override;
int32_t) const override;
};
using GatherV2CostPtr = std::shared_ptr<GatherV2Cost>;

View File

@ -101,6 +101,7 @@ REGISTER(CosInfo);
REGISTER(ACosInfo);
REGISTER(LogicalNotInfo);
REGISTER(L2NormalizeInfo);
REGISTER(LayerNormInfo);
REGISTER(ReduceMaxInfo);
REGISTER(ArgMaxWithValueInfo);
REGISTER(ArgMinWithValueInfo);

View File

@ -195,8 +195,8 @@ Status Softmax::GetAttrs() {
// for example: tensor dimension is 4, then axis range [-4, 3]
int32_t dim = SizeToInt(inputs_shape_.at(0).size());
auto it = std::find_if(axis_.begin(), axis_.end(),
[dim](const int32_t& element) { return ((element >= dim) || (element < -dim)); });
auto it =
std::find_if(axis_.begin(), axis_.end(), [dim](int32_t element) { return ((element >= dim) || (element < -dim)); });
if (it != axis_.end()) {
MS_LOG(ERROR) << name_ << " : The axis(" << *it << ") is out of range[" << -dim << ", " << dim - 1 << "].";
return FAILED;

View File

@ -0,0 +1,324 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel/ops_info/layer_norm_info.h"
#include <algorithm>
#include <vector>
#include "parallel/device_matrix.h"
#include "parallel/strategy.h"
namespace mindspore {
namespace parallel {
Status LayerNormInfo::GetAttrs() {
auto iter = attrs_.find(BEGIN_NORM_AXIS);
if (iter == attrs_.end()) {
MS_LOG(ERROR) << name_ << ": Can not find the attr of begin norm axis";
return FAILED;
}
if ((iter->second == nullptr) || !iter->second->isa<Int32Imm>()) {
MS_LOG(ERROR) << name_ << ": The axis type is not int";
return FAILED;
}
int32_t dim = SizeToInt(input_shape_.size());
auto axis = GetValue<int32_t>(iter->second);
if ((axis >= dim) || (axis < -dim)) {
MS_LOG(ERROR) << name_ << ": The axis(" << axis << ") is out of range[" << -dim << ", " << dim - 1 << "]";
return FAILED;
}
if (axis < 0) {
axis = axis + dim;
}
begin_norm_axis_ = IntToSize(axis);
return SUCCESS;
}
Status LayerNormInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.size() != LAYER_NORM_INPUT_SIZE) {
MS_LOG(ERROR) << name_ << ": Invalid strategy size " << stra.size();
return FAILED;
}
if (CheckStrategyValue(strategy, inputs_shape_, is_auto_parallel_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy value";
return FAILED;
}
Dimensions input_strategy = stra[LAYER_NORM_INPUT_INDEX];
Dimensions gamma_strategy = stra[LAYER_NORM_GAMMA_INDEX];
Dimensions beta_strategy = stra[LAYER_NORM_BETA_INDEX];
if (begin_norm_axis_ >= input_strategy.size()) {
MS_LOG(ERROR) << name_ << ": Invalid begin norm axis " << begin_norm_axis_;
return FAILED;
}
// check input strategy
for (size_t i = begin_norm_axis_; i < input_strategy.size(); ++i) {
if (input_strategy[begin_norm_axis_] != NO_SPLIT_STRATEGY) {
MS_LOG(ERROR) << name_ << ": Invalid input strategy " << ShapeToString(input_strategy);
return FAILED;
}
}
// check gamma and beta strategy
if ((gamma_strategy.size() > input_strategy.size()) || (beta_strategy.size() > input_strategy.size())) {
MS_LOG(ERROR) << name_ << " : The strategy size of gamma or beta is lager than input strategy";
return FAILED;
}
size_t gamma_diff = input_strategy.size() - gamma_strategy.size();
for (size_t j = 0; j < gamma_strategy.size(); ++j) {
if (gamma_strategy[j] != input_strategy[gamma_diff + j]) {
MS_LOG(ERROR) << name_ << ": Invalid gamma strategy " << ShapeToString(gamma_strategy);
return FAILED;
}
}
size_t beta_diff = input_strategy.size() - beta_strategy.size();
for (size_t k = 0; k < beta_strategy.size(); ++k) {
if (beta_strategy[k] != input_strategy[beta_diff + k]) {
MS_LOG(ERROR) << name_ << ": Invalid beta strategy " << ShapeToString(beta_strategy);
return FAILED;
}
}
return SUCCESS;
}
Status LayerNormInfo::InferDevMatrixShape() {
if (strategy_ == nullptr) {
MS_LOG(ERROR) << name_ << ": The strategy is null";
return FAILED;
}
std::vector<Dimensions> stra = strategy_->GetInputDim();
if (stra.empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is empty";
return FAILED;
}
dev_matrix_shape_ = stra[0];
return SUCCESS;
}
Status LayerNormInfo::CreateTensorMap(size_t input_index) {
if (inputs_shape_.size() <= input_index) {
MS_LOG(ERROR) << name_ << ": Invalid index" << input_index;
return FAILED;
}
Shape shape = inputs_shape_[input_index];
Shape tensor_map;
for (size_t i = 0; i < shape.size(); ++i) {
tensor_map.push_back(SizeToInt(shape.size() - i - 1));
}
inputs_tensor_map_.push_back(tensor_map);
outputs_tensor_map_.push_back(tensor_map);
return SUCCESS;
}
Status LayerNormInfo::InferTensorMap() {
if ((CreateTensorMap(LAYER_NORM_INPUT_INDEX) != SUCCESS) || (CreateTensorMap(LAYER_NORM_GAMMA_INDEX) != SUCCESS) ||
(CreateTensorMap(LAYER_NORM_BETA_INDEX) != SUCCESS)) {
MS_LOG(ERROR) << name_ << ": Create tensor map failed";
return FAILED;
}
return SUCCESS;
}
Status LayerNormInfo::CreateMirrorOp(size_t input_index) {
if (inputs_tensor_map_.size() <= input_index) {
MS_LOG(ERROR) << name_ << ": Invalid index " << input_index;
return FAILED;
}
Shape tensor_map = inputs_tensor_map_[input_index];
std::vector<Group> group;
if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Create group for input " << input_index << " failed";
return FAILED;
}
OperatorVector mirror_op;
if (!group.empty()) {
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
MS_LOG(INFO) << name_ << " : Create the mirror ops for input " << input_index << " success, group is "
<< group[0].name();
}
mirror_ops_.push_back(mirror_op);
return SUCCESS;
}
Status LayerNormInfo::InferMirrorOps() {
if ((CreateMirrorOp(LAYER_NORM_INPUT_INDEX) != SUCCESS) || (CreateMirrorOp(LAYER_NORM_GAMMA_INDEX) != SUCCESS) ||
(CreateMirrorOp(LAYER_NORM_BETA_INDEX) != SUCCESS)) {
MS_LOG(ERROR) << name_ << ": Create mirror op failed";
return FAILED;
}
return SUCCESS;
}
Status LayerNormInfo::CreateTensorInfo(size_t input_index) {
if ((inputs_shape_.size() <= input_index) || (inputs_tensor_map_.size() <= input_index)) {
MS_LOG(ERROR) << name_ << ": Invalid input index" << input_index;
return FAILED;
}
Shape tensor_map = inputs_tensor_map_[input_index];
Shape shape = inputs_shape_[input_index];
TensorLayout tensor_layout;
if (tensor_layout.InitFromVector(dev_matrix_shape_, tensor_map, shape) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init tensor layout for input " << input_index << " failed";
return FAILED;
}
TensorInfo tensor_info(tensor_layout);
inputs_tensor_info_.push_back(tensor_info);
outputs_tensor_info_.push_back(tensor_info);
return SUCCESS;
}
Status LayerNormInfo::InferTensorInfo() {
if ((CreateTensorInfo(LAYER_NORM_INPUT_INDEX) != SUCCESS) || (CreateTensorInfo(LAYER_NORM_GAMMA_INDEX) != SUCCESS) ||
(CreateTensorInfo(LAYER_NORM_BETA_INDEX) != SUCCESS)) {
MS_LOG(ERROR) << name_ << ": Create tensor info failed";
return FAILED;
}
return SUCCESS;
}
Status LayerNormInfo::InferAsLossDivisor() {
if (outputs_tensor_map_.size() != LAYER_NORM_INPUT_SIZE) {
MS_LOG(ERROR) << name_ << ": The size of outputs tensor map " << outputs_tensor_map_.size() << " is error";
return FAILED;
}
as_loss_divisor_ = ComputeRepeatDeviceNumByTensorMap(dev_matrix_shape_, outputs_tensor_map_[0]);
MS_LOG(INFO) << name_ << " : The dev matrix shape is " << ShapeToString(dev_matrix_shape_)
<< ", the output[0]'s tensor map is " << ShapeToString(outputs_tensor_map_[0])
<< ", as_loss_divisor_ is " << as_loss_divisor_;
return SUCCESS;
}
Status LayerNormInfo::SetCostUnderStrategy(const StrategyPtr &strategy) {
if (SetCostUnderStrategyBase(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Set cost failed";
return FAILED;
}
return SUCCESS;
}
Status LayerNormInfo::GenerateGammaAndBetaStrategies(const std::vector<StrategyPtr> &sp_vector) {
if ((gamma_shape_.size() > input_shape_.size()) || (beta_shape_.size() > input_shape_.size())) {
MS_LOG(ERROR) << name_ << ": The dimension of gamma or beta is lager than input";
return FAILED;
}
size_t gamma_diff = input_shape_.size() - gamma_shape_.size();
size_t beta_diff = input_shape_.size() - beta_shape_.size();
for (auto &sp : sp_vector) {
if ((sp == nullptr) || sp->GetInputDim().empty()) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}
std::vector<Dimensions> tmp_strategy;
Dimensions input_strategy = sp->GetInputDim()[0];
Dimensions gamma_strategy = input_strategy;
(void)gamma_strategy.erase(gamma_strategy.begin(),
gamma_strategy.begin() + static_cast<different_type>(gamma_diff));
Dimensions beta_strategy = input_strategy;
(void)beta_strategy.erase(beta_strategy.begin(), beta_strategy.begin() + static_cast<different_type>(beta_diff));
// reset the strategy
tmp_strategy.push_back(input_strategy);
tmp_strategy.push_back(gamma_strategy);
tmp_strategy.push_back(beta_strategy);
sp->ResetInputs(tmp_strategy);
}
return SUCCESS;
}
Status LayerNormInfo::GenerateStrategies(int32_t stage_id) {
if (InitShapes() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init shapes failed";
return FAILED;
}
if (GetAttrs() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Get attrs failed";
return FAILED;
}
Shape input_split(input_shape_.size(), SPLIT_FLAG);
if (begin_norm_axis_ >= input_split.size()) {
MS_LOG(ERROR) << name_ << ": Invalid begin norm axis " << begin_norm_axis_;
return FAILED;
}
// Can not split the dimensions from begin norm axis
for (size_t i = begin_norm_axis_; i < input_split.size(); ++i) {
input_split[i] = NO_SPLIT_FLAG;
}
// Generate strategy for input
Shapes splittable_inputs = {input_split};
Shapes tmp_inputs_shape = {input_shape_};
std::vector<StrategyPtr> sp_vector;
is_auto_parallel_ = true;
if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_inputs, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate input strategy failed";
return FAILED;
}
// Generate the strategies for gamma and beta
if (GenerateGammaAndBetaStrategies(sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate gamma and beta strategies failed";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(DEBUG) << name_ << ": Successfully generated " << success << " strategy";
}
}
return SUCCESS;
}
Status LayerNormInfo::InitShapes() {
if (inputs_shape_.size() != LAYER_NORM_INPUT_SIZE) {
MS_LOG(ERROR) << name_ << ": Invalid inputs size";
return FAILED;
}
input_shape_ = inputs_shape_[LAYER_NORM_INPUT_INDEX];
gamma_shape_ = inputs_shape_[LAYER_NORM_GAMMA_INDEX];
beta_shape_ = inputs_shape_[LAYER_NORM_BETA_INDEX];
return SUCCESS;
}
Status LayerNormInfo::Init(const StrategyPtr &strategy) {
if ((InitShapes() != SUCCESS) || (InitWithAutoRepeatCalc(strategy)) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success";
return SUCCESS;
}
Status LayerNormInfo::InitForCostModel(const StrategyPtr &strategy) {
if ((InitShapes() != SUCCESS) || (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS)) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init for cost model success";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,76 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PARALLEL_OPS_INFO_LAYER_NORM_INFO_H_
#define MINDSPORE_CCSRC_PARALLEL_OPS_INFO_LAYER_NORM_INFO_H_
#include <string>
#include <memory>
#include <unordered_map>
#include <vector>
#include "ir/value.h"
#include "parallel/auto_parallel/operator_costmodel.h"
#include "parallel/ops_info/operator_info.h"
#include "parallel/strategy.h"
namespace mindspore {
namespace parallel {
constexpr size_t LAYER_NORM_INPUT_SIZE = 3;
constexpr size_t LAYER_NORM_INPUT_INDEX = 0;
constexpr size_t LAYER_NORM_GAMMA_INDEX = 1;
constexpr size_t LAYER_NORM_BETA_INDEX = 2;
constexpr char BEGIN_NORM_AXIS[] = "begin_norm_axis";
// The dimensions of input tensor starting from begin norm axis cannot be split. Other dimensions can be split
// arbitrarily. Gamma and beta should match input to meet the broadcast requirements of mul and add.
class LayerNormInfo : public OperatorInfo {
public:
LayerNormInfo(const std::string& operator_name, const Shapes& inputs_shape, const Shapes& outputs_shape,
const PrimitiveAttrs& attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<LayerNormCost>(true)),
begin_norm_axis_(0) {}
~LayerNormInfo() override = default;
Status Init(const StrategyPtr& strategy) override;
Status InitForCostModel(const StrategyPtr& strategy) override;
Status GenerateStrategies(int32_t) override;
Status SetCostUnderStrategy(const StrategyPtr&) override;
protected:
Status GetAttrs() override;
Status CheckStrategy(const StrategyPtr& strategy) override;
Status InferMirrorOps() override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
Status InferAsLossDivisor() override;
Status CreateTensorMap(size_t input_index);
Status CreateTensorInfo(size_t input_index);
Status CreateMirrorOp(size_t input_index);
Status GenerateGammaAndBetaStrategies(const std::vector<StrategyPtr>& sp_vector);
Status InitShapes();
private:
size_t begin_norm_axis_;
Shape input_shape_;
Shape gamma_shape_;
Shape beta_shape_;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_LAYER_NORM_INFO_H_

View File

@ -27,6 +27,7 @@
#include "parallel/ops_info/gather_v2_info.h"
#include "parallel/ops_info/get_next_info.h"
#include "parallel/ops_info/l2_normalize_info.h"
#include "parallel/ops_info/layer_norm_info.h"
#include "parallel/ops_info/loss_info.h"
#include "parallel/ops_info/matmul_info.h"
#include "parallel/ops_info/onehot_info.h"

View File

@ -26,6 +26,8 @@ constexpr int32_t PRELU_CHANNEL_INDEX = 1;
constexpr int32_t PRELU_CHANNEL_STRATEGY = 1;
constexpr int32_t NO_SPLIT_MAP = -1;
constexpr int32_t NO_SPLIT_STRATEGY = 1;
constexpr int32_t SPLIT_FLAG = 1;
constexpr int32_t NO_SPLIT_FLAG = 0;
constexpr size_t MATMUL_ATTRS_SIZE = 2;
constexpr size_t MATMUL_INPUTS_SIZE = 2;
constexpr size_t MATMUL_OUTPUTS_SIZE = 1;
@ -173,6 +175,7 @@ constexpr char ARGMINWITHVALUE[] = "ArgMinWithValue";
constexpr char CONV2D[] = "Conv2D";
constexpr char FUSE_BATCH_NORM[] = "FusedBatchNorm";
constexpr char BATCH_NORM[] = "BatchNorm";
constexpr char LAYER_NORM[] = "LayerNorm";
constexpr char POOLING[] = "Pooling";
constexpr char CAST[] = "Cast";
constexpr char MAX_POOL_WITH_ARGMAX[] = "MaxPoolWithArgmax";

View File

@ -82,6 +82,7 @@ std::vector<std::string> splittable_op_ = {MATMUL,
SIMPLE_MEAN,
FLATTEN,
BATCH_NORM,
LAYER_NORM,
BIAS_ADD,
ASSIGN_SUB,
COS,

View File

@ -245,8 +245,8 @@ void ValidRedistributionLayoutCheck(const DeviceArrangement& in_device_arrangeme
unified_out_tensor_map, unified_tensor_shape);
}
void ValidRedistributionLayoutCheckAll(const int32_t& device_pow_size, const int32_t& tensor_pow_size,
const int32_t& max_device_dim, const int32_t& max_shape_dim) {
void ValidRedistributionLayoutCheckAll(int32_t device_pow_size, int32_t tensor_pow_size,
int32_t max_device_dim, int32_t max_shape_dim) {
std::vector<std::tuple<DeviceArrangement, TensorMap, TensorShape>> layout_list;
GenerateValidLayoutByDeviceSizeAndTensorSize(device_pow_size, tensor_pow_size, max_device_dim, max_shape_dim,
&layout_list);

View File

@ -260,8 +260,8 @@ TEST_F(TestReshapeLayoutTransfer, ValidInferUnifiedLayoutCheck11) {
ValidUnifiedLayoutCheck(device_arrangement, in_tensor_map, in_tensor_shape, out_tensor_map, out_tensor_shape);
}
void ValidInferUnifiedLayoutCheckAll(const int32_t& device_pow_size, const int32_t& tensor_pow_size,
const int32_t& max_device_dim, const int32_t& max_shape_dim) {
void ValidInferUnifiedLayoutCheckAll(int32_t device_pow_size, int32_t tensor_pow_size,
int32_t max_device_dim, int32_t max_shape_dim) {
std::vector<std::tuple<DeviceArrangement, TensorMap, TensorShape>> layout_list;
GenerateValidLayoutByDeviceSizeAndTensorSize(device_pow_size, tensor_pow_size, max_device_dim, max_shape_dim,
&layout_list);

View File

@ -51,7 +51,7 @@ std::vector<std::vector<int32_t>> combine(const std::vector<int32_t>& in, int32_
return output;
}
void GenerateValidShapeBySizeAndDim(const int32_t& pow_size, const int32_t& dim,
void GenerateValidShapeBySizeAndDim(int32_t pow_size, int32_t dim,
std::vector<std::vector<int32_t>>* out) {
out->clear();
std::vector<int32_t> in;
@ -78,7 +78,7 @@ void GenerateValidShapeBySizeAndDim(const int32_t& pow_size, const int32_t& dim,
return;
}
void GenerateValidShapeBySize(const int32_t& pow_size, std::vector<std::vector<int32_t>>* out) {
void GenerateValidShapeBySize(int32_t pow_size, std::vector<std::vector<int32_t>>* out) {
out->clear();
for (int32_t dim = 1; dim <= pow_size; dim++) {
std::vector<std::vector<int32_t>> combine_result;
@ -148,8 +148,8 @@ void GenerateValidTensorMap(const std::vector<int32_t>& device_arrangement, cons
}
void GenerateValidLayoutByDeviceSizeAndTensorSize(
const int32_t& device_pow_size, const int32_t& tensor_pow_size, const int32_t& max_device_dim,
const int32_t& max_shape_dim,
int32_t device_pow_size, int32_t tensor_pow_size, int32_t max_device_dim,
int32_t max_shape_dim,
std::vector<std::tuple<std::vector<int32_t>, std::vector<int32_t>, std::vector<int32_t>>>* layout_list) {
layout_list->clear();
std::vector<std::vector<int32_t>> device_arrangement_list;

View File

@ -27,10 +27,10 @@ namespace parallel {
std::vector<std::vector<int32_t>> combine(const std::vector<int32_t>& in, int32_t target);
void GenerateValidShapeBySizeAndDim(const int32_t& pow_size, const int32_t& dim,
void GenerateValidShapeBySizeAndDim(int32_t pow_size, int32_t dim,
std::vector<std::vector<int32_t>>* out);
void GenerateValidShapeBySize(const int32_t& pow_size, std::vector<std::vector<int32_t>>* out);
void GenerateValidShapeBySize(int32_t pow_size, std::vector<std::vector<int32_t>>* out);
std::vector<int32_t> GenerateTensorMap(const uint32_t& map_size, const std::vector<int32_t>& pos_index,
const std::vector<int32_t>& pos_value);
@ -39,8 +39,8 @@ void GenerateValidTensorMap(const std::vector<int32_t>& device_arrangement, cons
std::vector<std::vector<int32_t>>* tensor_map_list);
void GenerateValidLayoutByDeviceSizeAndTensorSize(
const int32_t& device_pow_size, const int32_t& tensor_pow_size, const int32_t& max_device_dim,
const int32_t& max_shape_dim,
int32_t device_pow_size, int32_t tensor_pow_size, int32_t max_device_dim,
int32_t max_shape_dim,
std::vector<std::tuple<std::vector<int32_t>, std::vector<int32_t>, std::vector<int32_t>>>* layout_list);
uint32_t ComputeNoneNumber(const std::vector<int32_t>& tensor_map);

View File

@ -0,0 +1,96 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
from mindspore.common.initializer import initializer
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
super().__init__()
self.begin_norm_axis = -1
self.begin_params_axis = 1
self.mul = P.Mul().set_strategy(strategy1)
self.layer_norm = P.LayerNorm(self.begin_norm_axis, self.begin_params_axis).set_strategy(strategy2)
self.mul2 = P.Mul().set_strategy(strategy3)
self.mul_weight = Parameter(mul_weight, "w1")
self.normalized_shape = [64, 32, 16]
self.gamma = Parameter(initializer('ones', self.normalized_shape), name="gamma")
self.beta = Parameter(initializer('zeros', self.normalized_shape), name="beta")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out, _, _ = self.layer_norm(out, self.gamma, self.beta)
out = self.mul2(out, b)
return out
_x = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
_w = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32, 16]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_layer_norm_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1))
strategy2 = ((16, 1, 1, 1), (1, 1, 1), (1, 1, 1))
strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
net = Net(_w, strategy1, strategy2, strategy3)
compile(net)
def test_layer_norm_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 1, 16, 1), (1, 1, 16, 1))
strategy2 = ((1, 1, 16, 1), (1, 16, 1), (1, 16, 1))
strategy3 = ((1, 1, 16, 1), (1, 1, 16, 1))
net = Net(_w, strategy1, strategy2, strategy3)
compile(net)
def test_layer_norm_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
strategy2 = ((2, 2, 4, 1), (2, 4, 1), (2, 4, 1))
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
net = Net(_w, strategy1, strategy2, strategy3)
compile(net)
def test_layer_norm_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w)
compile(net)
def test_layer_norm_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1))
strategy2 = ((1, 2, 2, 1), (2, 2, 1), (2, 2, 1))
strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
net = Net(_w, strategy1, strategy2, strategy3)
compile(net)