forked from mindspore-Ecosystem/mindspore
!22830 args must be compatible with loaded graph
Merge pull request !22830 from lanzhineng/mindir_control_flow
This commit is contained in:
commit
44775dca4b
|
@ -945,6 +945,19 @@ bool SetMindIRGraphAction(const ResourcePtr &res) {
|
||||||
return arg;
|
return arg;
|
||||||
});
|
});
|
||||||
|
|
||||||
|
abstract::AbstractBasePtrList func_args;
|
||||||
|
const auto inputs = fg->get_inputs();
|
||||||
|
(void)std::transform(inputs.begin(), inputs.end(), std::back_inserter(func_args),
|
||||||
|
[](const AnfNodePtr &arg) -> AbstractBasePtr {
|
||||||
|
MS_EXCEPTION_IF_NULL(arg);
|
||||||
|
return arg->abstract()->Broaden();
|
||||||
|
});
|
||||||
|
if (!AbstractBasePtrListDeepEqual(func_args, broaded_args)) {
|
||||||
|
MS_LOG(EXCEPTION) << "The args is not compatible with the function graph."
|
||||||
|
<< " Please check the args is compatible with the follow: " << abstract::ArgsToString(func_args)
|
||||||
|
<< " The input args:" << abstract::ArgsToString(broaded_args);
|
||||||
|
}
|
||||||
|
|
||||||
// suppose that there is not KeywordArgument for the top graph
|
// suppose that there is not KeywordArgument for the top graph
|
||||||
// get the hyper parameter
|
// get the hyper parameter
|
||||||
for (const auto ¶m : fg->parameters()) {
|
for (const auto ¶m : fg->parameters()) {
|
||||||
|
|
|
@ -306,8 +306,7 @@ void IrExportBuilder::SetValueInfoProto(const AnfNodePtr &node, mind_ir::ValueIn
|
||||||
mind_ir::TensorProto *tensor_proto = value_proto->add_tensor();
|
mind_ir::TensorProto *tensor_proto = value_proto->add_tensor();
|
||||||
tensor_proto->set_data_type(GetMindirDataType(elem_type->type_id()));
|
tensor_proto->set_data_type(GetMindirDataType(elem_type->type_id()));
|
||||||
if (dims.size() == 0) {
|
if (dims.size() == 0) {
|
||||||
MS_LOG(DEBUG) << "SetValueInfoProto set default dim 1.";
|
MS_LOG(DEBUG) << "The dim of ValueInfoProto is 0.";
|
||||||
tensor_proto->add_dims(1);
|
|
||||||
} else {
|
} else {
|
||||||
for (const auto &dim : dims) {
|
for (const auto &dim : dims) {
|
||||||
MS_LOG(DEBUG) << "SetValueInfoProto dim: " << dim;
|
MS_LOG(DEBUG) << "SetValueInfoProto dim: " << dim;
|
||||||
|
|
|
@ -0,0 +1,67 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.common.tensor import Tensor
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore.train.serialization import export, load
|
||||||
|
|
||||||
|
ZERO = Tensor([0], mstype.int32)
|
||||||
|
ONE = Tensor([1], mstype.int32)
|
||||||
|
|
||||||
|
|
||||||
|
class RecrusiveNet(nn.Cell):
|
||||||
|
def construct(self, x, z):
|
||||||
|
def f(x, z):
|
||||||
|
y = ZERO
|
||||||
|
if x < 0:
|
||||||
|
y = ONE
|
||||||
|
elif x < 3:
|
||||||
|
y = x * f(x - 1, z)
|
||||||
|
elif x < 5:
|
||||||
|
y = x * f(x - 2, z)
|
||||||
|
else:
|
||||||
|
y = f(x - 4, z)
|
||||||
|
z = y + 1 + z
|
||||||
|
return z
|
||||||
|
|
||||||
|
return f(x, z)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_recrusive():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
network = RecrusiveNet()
|
||||||
|
|
||||||
|
x = Tensor(np.array([1]).astype(np.float32))
|
||||||
|
y = Tensor(np.array([2]).astype(np.float32))
|
||||||
|
origin_out = network(x, y)
|
||||||
|
|
||||||
|
file_name = "recrusive_net"
|
||||||
|
export(network, x, y, file_name=file_name, file_format='MINDIR')
|
||||||
|
mindir_name = file_name + ".mindir"
|
||||||
|
assert os.path.exists(mindir_name)
|
||||||
|
|
||||||
|
graph = load(mindir_name)
|
||||||
|
loaded_net = nn.GraphCell(graph)
|
||||||
|
outputs_after_load = loaded_net(x, y)
|
||||||
|
assert origin_out == outputs_after_load
|
Loading…
Reference in New Issue