forked from mindspore-Ecosystem/mindspore
!22830 args must be compatible with loaded graph
Merge pull request !22830 from lanzhineng/mindir_control_flow
This commit is contained in:
commit
44775dca4b
|
@ -945,6 +945,19 @@ bool SetMindIRGraphAction(const ResourcePtr &res) {
|
|||
return arg;
|
||||
});
|
||||
|
||||
abstract::AbstractBasePtrList func_args;
|
||||
const auto inputs = fg->get_inputs();
|
||||
(void)std::transform(inputs.begin(), inputs.end(), std::back_inserter(func_args),
|
||||
[](const AnfNodePtr &arg) -> AbstractBasePtr {
|
||||
MS_EXCEPTION_IF_NULL(arg);
|
||||
return arg->abstract()->Broaden();
|
||||
});
|
||||
if (!AbstractBasePtrListDeepEqual(func_args, broaded_args)) {
|
||||
MS_LOG(EXCEPTION) << "The args is not compatible with the function graph."
|
||||
<< " Please check the args is compatible with the follow: " << abstract::ArgsToString(func_args)
|
||||
<< " The input args:" << abstract::ArgsToString(broaded_args);
|
||||
}
|
||||
|
||||
// suppose that there is not KeywordArgument for the top graph
|
||||
// get the hyper parameter
|
||||
for (const auto ¶m : fg->parameters()) {
|
||||
|
|
|
@ -306,8 +306,7 @@ void IrExportBuilder::SetValueInfoProto(const AnfNodePtr &node, mind_ir::ValueIn
|
|||
mind_ir::TensorProto *tensor_proto = value_proto->add_tensor();
|
||||
tensor_proto->set_data_type(GetMindirDataType(elem_type->type_id()));
|
||||
if (dims.size() == 0) {
|
||||
MS_LOG(DEBUG) << "SetValueInfoProto set default dim 1.";
|
||||
tensor_proto->add_dims(1);
|
||||
MS_LOG(DEBUG) << "The dim of ValueInfoProto is 0.";
|
||||
} else {
|
||||
for (const auto &dim : dims) {
|
||||
MS_LOG(DEBUG) << "SetValueInfoProto dim: " << dim;
|
||||
|
|
|
@ -0,0 +1,67 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.train.serialization import export, load
|
||||
|
||||
ZERO = Tensor([0], mstype.int32)
|
||||
ONE = Tensor([1], mstype.int32)
|
||||
|
||||
|
||||
class RecrusiveNet(nn.Cell):
|
||||
def construct(self, x, z):
|
||||
def f(x, z):
|
||||
y = ZERO
|
||||
if x < 0:
|
||||
y = ONE
|
||||
elif x < 3:
|
||||
y = x * f(x - 1, z)
|
||||
elif x < 5:
|
||||
y = x * f(x - 2, z)
|
||||
else:
|
||||
y = f(x - 4, z)
|
||||
z = y + 1 + z
|
||||
return z
|
||||
|
||||
return f(x, z)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_recrusive():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
network = RecrusiveNet()
|
||||
|
||||
x = Tensor(np.array([1]).astype(np.float32))
|
||||
y = Tensor(np.array([2]).astype(np.float32))
|
||||
origin_out = network(x, y)
|
||||
|
||||
file_name = "recrusive_net"
|
||||
export(network, x, y, file_name=file_name, file_format='MINDIR')
|
||||
mindir_name = file_name + ".mindir"
|
||||
assert os.path.exists(mindir_name)
|
||||
|
||||
graph = load(mindir_name)
|
||||
loaded_net = nn.GraphCell(graph)
|
||||
outputs_after_load = loaded_net(x, y)
|
||||
assert origin_out == outputs_after_load
|
Loading…
Reference in New Issue