forked from mindspore-Ecosystem/mindspore
gpu support tanh & tanhgrad kernel
This commit is contained in:
parent
d9dd6aa0b8
commit
311bf41e6d
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
template<typename T>
|
||||
__global__ void TanhKernel(const size_t size, const T* x_addr, T* y_addr) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
y_addr[pos] = tanh(x_addr[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void TanhGradKernel(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||
dx_addr[pos] = dy_addr[pos] * (1 - y_addr[pos] * y_addr[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream) {
|
||||
TanhKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, x_addr, y_addr);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream) {
|
||||
TanhGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, y_addr, dy_addr, dx_addr);
|
||||
}
|
||||
|
||||
template void Tanh(const size_t size, const float* x_addr, float* y_addr, cudaStream_t cuda_stream);
|
||||
template void TanhGrad(const size_t size, const float* y_addr, const float* dy_addr,
|
||||
float* dx_addr, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,28 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template<typename T>
|
||||
void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream);
|
||||
|
||||
template<typename T>
|
||||
void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_
|
|
@ -0,0 +1,24 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/tanh_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
TanhGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,75 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class TanhGpuKernel : public GpuKernel {
|
||||
public:
|
||||
TanhGpuKernel() : input_size_(0) {}
|
||||
~TanhGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
auto x_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
auto y_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
Tanh(input_size_ / sizeof(T), x_addr, y_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
input_size_ = sizeof(T);
|
||||
for (auto dim : input_shape) {
|
||||
input_size_ *= dim;
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_LSTM_GPU_KERNEL_H_
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/tanh_grad_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
TanhGradKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/tanh_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class TanhGradKernel : public GpuKernel {
|
||||
public:
|
||||
TanhGradKernel() : input_size_(0) {}
|
||||
~TanhGradKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
auto y_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
auto dy_addr = GetDeviceAddress<T>(inputs, 1);
|
||||
auto dx_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
TanhGrad(input_size_ / sizeof(T), y_addr, dy_addr, dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
|
||||
input_size_ = sizeof(T);
|
||||
for (auto dim : input_shape) {
|
||||
input_size_ *= dim;
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
input_size_list_.push_back(input_size_);
|
||||
output_size_list_.push_back(input_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
size_t input_size_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_
|
|
@ -0,0 +1,72 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
class TanhNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(TanhNet, self).__init__()
|
||||
self.tanh = P.Tanh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.tanh(x)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input_data, sens):
|
||||
gout = self.grad(self.network)(input_data, sens)
|
||||
return gout
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_Tanh():
|
||||
x_np = np.array(
|
||||
[[ 0.28522366, 0.38033979, 1.54657853, -0.98530175, -0.54365635, 0.12652203, -1.33449938, -0.27737698],
|
||||
[ 2.06282293, 0.84635078, 0.16628414, -0.91823183, -0.72023044, -0.09147043, -0.04166984, -1.5664763 ],
|
||||
[-0.17157249, 0.44260951, -0.6683391, 1.13142613, 1.5536937, -0.32799768, -0.20016545, 0.06773927]],
|
||||
dtype= np.float32)
|
||||
dy_np = np.array(
|
||||
[[ 0.44969849, -0.187879, -0.64300827, 1.36638774, 0.89930276, -0.23835229, -0.67771854, -1.88984999],
|
||||
[ 2.00418801, 2.33336475, 0.00241747, 1.31558685, 0.06768817, -2.23008804, -0.26818366, -1.26873401],
|
||||
[ 1.83694105, 0.5339005, 0.51117424, 0.49202378, -0.83297819, -0.71001219, 0.18913512, 0.65580389]],
|
||||
dtype= np.float32)
|
||||
|
||||
x_ms = Tensor(x_np)
|
||||
dy_ms = Tensor(dy_np)
|
||||
|
||||
net = TanhNet()
|
||||
grad = Grad(net)
|
||||
output = grad(x_ms, dy_ms)
|
||||
|
||||
expect = [[ 0.41501077, -0.16312202, -0.10675912, 0.58678646, 0.67828224, -0.23457714, -0.1643468 , -1.75159405],
|
||||
[ 0.12541081, 1.2251587 , 0.00235184, 0.62396731, 0.04191568, -2.21153283, -0.26771853, -0.20311764],
|
||||
[ 1.78391056, 0.44159236, 0.33690308, 0.16800483, -0.13651318, -0.63878956, 0.18175511, 0.65280384]]
|
||||
|
||||
assert np.allclose(output[0].asnumpy(), expect)
|
Loading…
Reference in New Issue