!984 Add unit test case for HWC2CHW.

Merge pull request !984 from Tinazhang/hwc2chw
This commit is contained in:
mindspore-ci-bot 2020-05-09 05:02:41 +08:00 committed by Gitee
commit 2860fd9338
2 changed files with 121 additions and 0 deletions

View File

@ -0,0 +1,121 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
import mindspore.dataset as ds
from mindspore import log as logger
from util import diff_mse, visualize, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_HWC2CHW(plot=False):
"""
Test HWC2CHW
"""
logger.info("Test HWC2CHW")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
hwc2chw_op = c_vision.HWC2CHW()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
image_transposed = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_transposed.append(item1["image"].copy())
image.append(item2["image"].copy())
# check if the shape of data is transposed correctly
# transpose the original image from shape (H,W,C) to (C,H,W)
mse = diff_mse(item1['image'], item2['image'].transpose(2, 0, 1))
assert mse == 0
if plot:
visualize(image, image_transposed)
def test_HWC2CHW_md5():
"""
Test HWC2CHW(md5)
"""
logger.info("Test HWC2CHW with md5 comparison")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
hwc2chw_op = c_vision.HWC2CHW()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
# expected md5 from images
filename = "test_HWC2CHW_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_HWC2CHW_comp(plot=False):
"""
Test HWC2CHW between python and c image augmentation
"""
logger.info("Test HWC2CHW with c_transform and py_transform comparison")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
hwc2chw_op = c_vision.HWC2CHW()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=hwc2chw_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
py_vision.HWC2CHW()
]
transform = py_vision.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
image_c_transposed = []
image_py_transposed = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# compare images between that applying c_transform and py_transform
mse = diff_mse(py_image, c_image)
# the images aren't exactly the same due to rounding error
assert mse < 0.001
image_c_transposed.append(item1["image"].copy())
image_py_transposed.append(item2["image"].copy())
if plot:
visualize(image_c_transposed, image_py_transposed)
if __name__ == '__main__':
test_HWC2CHW()
test_HWC2CHW_md5()
test_HWC2CHW_comp()