!833 remove hccl seeting in mobilenetv2 eval script

Merge pull request !833 from wandongdong/master
This commit is contained in:
mindspore-ci-bot 2020-04-29 17:17:53 +08:00 committed by Gitee
commit 122c9bc7f0
4 changed files with 41 additions and 6 deletions

View File

@ -27,6 +27,7 @@ config = ed({
"lr": 0.4,
"momentum": 0.9,
"weight_decay": 4e-5,
"label_smooth": 0.1,
"loss_scale": 1024,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,

View File

@ -53,8 +53,8 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
# define map operations
decode_op = C.Decode()
resize_crop_op = C.RandomResizedCrop(resize_height, scale=(0.2, 1.0))
horizontal_flip_op = C.RandomHorizontalFlip()
resize_crop_op = C.RandomResizedCrop(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
resize_op = C.Resize((256, 256))
center_crop = C.CenterCrop(resize_width)

View File

@ -38,8 +38,6 @@ context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)
if __name__ == '__main__':
context.set_context(enable_hccl=False)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
net = mobilenet_v2()

View File

@ -28,6 +28,10 @@ from mindspore.model_zoo.mobilenet import mobilenet_v2
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from mindspore.train.model import Model, ParallelMode
@ -54,6 +58,35 @@ context.set_context(enable_task_sink=True)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)
class CrossEntropyWithLabelSmooth(_Loss):
"""
CrossEntropyWith LabelSmooth.
Args:
smooth_factor (float): smooth factor, default=0.
num_classes (int): num classes
Returns:
None.
Examples:
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000)
"""
def __init__(self, smooth_factor=0., num_classes=1000):
super(CrossEntropyWithLabelSmooth, self).__init__()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean(False)
self.cast = P.Cast()
def construct(self, logit, label):
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value)
out_loss = self.ce(logit, one_hot_label)
out_loss = self.mean(out_loss, 0)
return out_loss
class Monitor(Callback):
"""
@ -63,7 +96,7 @@ class Monitor(Callback):
lr_init (numpy array): train lr
Returns:
None.
None
Examples:
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
@ -122,7 +155,10 @@ if __name__ == '__main__':
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
cell.add_flags_recursive(fp32=True)
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
if config.label_smooth > 0:
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
else:
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
print("train args: ", args_opt, "\ncfg: ", config,
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))