!49784 Remove the vmap

Merge pull request !49784 from huangxinjing/code_docs_remove_vmap2
This commit is contained in:
yanghaoran 2023-03-04 09:25:41 +00:00 committed by Gitee
commit 44146fb260
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
1 changed files with 0 additions and 512 deletions

View File

@ -1,512 +0,0 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test vmap in graph mode"""
import platform
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.numpy as mnp
import mindspore.context as context
import mindspore.ops.operations as P
import mindspore.ops.functional as F
from mindspore import dtype as mstype
from mindspore.common import Tensor
from mindspore.ops.functional import vmap
from mindspore.common.api import jit
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_vmap_cond():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. The `fn` is a `Cell`, which contains control flow operators, such as `if` and `while`.
2. The specific VmapRule of `Switch` and `Add` operation.
3. The `in_axes` is a single integer, which automatically match to multiple arguments.
Expectation: success
"""
class CondNet(nn.Cell):
def __init__(self):
super(CondNet, self).__init__()
self.inner_tensor_a = Tensor(2, mstype.int32)
self.inner_tensor_b = Tensor(5, mstype.int32)
def construct(self, x, y):
a = self.inner_tensor_a + 1
b = self.inner_tensor_b
if a < b:
b += a
else:
b -= a
b += 5
i = 0
while i < 4:
x += 1
i += 1
out = b + x + y
return out
x_hat = Tensor([2, 3, 1], mstype.int32)
y_hat = Tensor([5, 4, 3], mstype.int32)
result = vmap(CondNet(), 0, 0)(x_hat, y_hat)
expect_result = Tensor([24, 24, 21], mstype.int32)
assert np.allclose(result.asnumpy(), expect_result.asnumpy())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_gradient():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. `vmap` and `grad` are used in combination.
2. `vmap` and `jvp` are used in combination.
Expectation: success
"""
def forward_fn(x, y):
out = x + 2 * y
out = F.sin(out)
return F.reduce_sum(out)
class GradNet(nn.Cell):
def __init__(self, fn):
super(GradNet, self).__init__()
self.fn = fn
def construct(self, x, y):
out = F.grad(self.fn, grad_position=(0, 1))(x, y)
return out
def vmap_fn(x, y):
output = vmap(forward_fn, 1, 0)(x, y)
return F.reduce_sum(output)
def jvp_fn(x, y, v):
out = F.jvp(forward_fn, (x, y), (v, v))
return out
x_hat = Tensor([[1., 2., 3.], [2., 3., 4.]], mstype.float32)
y_hat = Tensor([[2., 3., 4.], [3., 4., 5.]], mstype.float32)
expect_x_grad = Tensor([[0.28366217, -0.14550003, 0.0044257],
[-0.14550003, 0.0044257, 0.13673723]], mstype.float32)
expect_y_grad = Tensor([[0.56732434, -0.29100007, 0.0088514],
[-0.29100007, 0.0088514, 0.27347445]], mstype.float32)
vmap_grad_x, vmap_grad_y = vmap(GradNet(forward_fn), 1, 1)(x_hat, y_hat)
assert np.allclose(vmap_grad_x.asnumpy(), expect_x_grad.asnumpy(), 0.0001, 0.0001)
assert np.allclose(vmap_grad_y.asnumpy(), expect_y_grad.asnumpy(), 0.0001, 0.0001)
grad_vmap_x, grad_vmap_y = GradNet(vmap_fn)(x_hat, y_hat)
assert np.allclose(grad_vmap_x.asnumpy(), expect_x_grad.asnumpy(), 0.0001, 0.0001)
assert np.allclose(grad_vmap_y.asnumpy(), expect_y_grad.asnumpy(), 0.0001, 0.0001)
x_hat = Tensor(np.array([[1.], [2.], [3.]]), mstype.float32)
y_hat = Tensor(np.array([[1.], [2.], [3.]]), mstype.float32)
v_hat = Tensor(np.array([[1.], [2.], [3.]]), mstype.float32)
vmap_jvp_x, vmap_jvp_y = vmap(jvp_fn, 0, 0)(x_hat, y_hat, v_hat)
expect_x_jvp = Tensor([0.141120002, -0.279415488, 0.412118465], mstype.float32)
expect_y_jvp = Tensor([-2.96997738, 5.76102161, -8.20017242], mstype.float32)
assert np.allclose(vmap_jvp_x.asnumpy(), expect_x_jvp.asnumpy(), 0.0001, 0.0001)
assert np.allclose(vmap_jvp_y.asnumpy(), expect_y_jvp.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_vmap_monad():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. The `fn` is a `Cell`, which contains side effect operators, such as `AssignAdd`, `Assign`,
`Print`, `ScatterAdd`.
2. Parameter as argument.
Expectation: success
"""
class AssignNet(nn.Cell):
def __init__(self):
super(AssignNet, self).__init__()
self.assign = P.Assign()
self.assign_add = P.AssignAdd()
self.scatter_add = P.ScatterAdd()
self.assign_ref = Parameter(Tensor([[0, 0, 0], [1, 1, 1]], mstype.float32), name='assign_ref')
self.replace_tensor = Tensor([[1, 1, 1], [2, 2, 2]], mstype.float32)
def construct(self, assign_add_val, assign_add_var, scatter_ref, indices, updates):
self.assign(self.assign_ref, self.replace_tensor)
F.print(self.assign_ref)
self.assign_add(assign_add_var, assign_add_val)
out = assign_add_var + self.scatter_add(scatter_ref, indices, updates)
return out
class VmapMonadNet(nn.Cell):
def __init__(self, net):
super(VmapMonadNet, self).__init__()
self.net = net
self.assign_add_var = Parameter(
Tensor([[[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[2, 2, 2], [2, 2, 2], [2, 2, 2]]], mstype.float32),
name='assign_add_var')
self.scatter_ref = Parameter(
Tensor([[[0, 0, 0], [0, 0, 0]], [[1, 1, 1], [1, 1, 1]], [[2, 2, 2], [2, 2, 2]]], mstype.float32),
name='scatter_ref')
def construct(self, assign_add_val, scatter_indices, scatter_updates):
output = vmap(self.net, (0, 1, 0, 0, None), 1)(assign_add_val, self.assign_add_var,
self.scatter_ref, scatter_indices, scatter_updates)
return output, self.assign_add_var
assign_add_val = Tensor([[[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]], [[1, 1, 1], [2, 2, 2]]], mstype.float32)
scatter_indices = Tensor([[[0, 1], [1, 1]], [[0, 1], [0, 1]], [[1, 1], [1, 0]]], mstype.int32)
scatter_updates = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]], mstype.int32)
output, assign_add_var = VmapMonadNet(AssignNet())(assign_add_val, scatter_indices, scatter_updates)
expect_output = Tensor([[[3, 3, 3], [7, 7, 7], [8, 8, 8]], [[13, 13, 13], [11, 11, 11], [12, 12, 12]]],
mstype.float32)
expect_assign_add_var = Tensor([[[2, 2, 2], [2, 2, 2], [2, 2, 2]], [[4, 4, 4], [4, 4, 4], [4, 4, 4]]],
mstype.float32)
assert np.allclose(output.asnumpy(), expect_output.asnumpy())
assert np.allclose(assign_add_var.asnumpy(), expect_assign_add_var.asnumpy())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_reduce():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. The specific VmapRule of `ReduceSum` operation.
2. The `out_axes` is a single integer, which automatically match to multiple outputs.
Expectation: success
"""
class ReduceNet(nn.Cell):
def __init__(self):
super(ReduceNet, self).__init__()
self.reduce_sum = P.ReduceSum(keep_dims=False)
self.reduce_sum_keep_dims = P.ReduceSum(keep_dims=True)
def construct(self, x):
out1 = self.reduce_sum(x)
out2 = self.reduce_sum_keep_dims(x)
out3 = self.reduce_sum(x, 1)
out4 = self.reduce_sum_keep_dims(x, 1)
out5 = self.reduce_sum(x, (0, 1))
out6 = self.reduce_sum_keep_dims(x, (0, 1))
output = (out1, out2, out3, out4, out5, out6)
return output
class VmapNet(nn.Cell):
def __init__(self, net):
super(VmapNet, self).__init__()
self.net = net
def construct(self, x):
vmap_function = F.vmap(self.net, 1, 0)
output = vmap_function(x)
return output
x_hat = Tensor(np.array([[[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
[[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
[[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]],
[[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
[[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
[[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]],
[[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
[[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
[[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]]), mstype.float32)
result1, result2, result3, result4, result5, result6 = VmapNet(ReduceNet())(x_hat)
expect_result1 = Tensor([108, 270, 432], mstype.float32)
assert np.allclose(result1.asnumpy(), expect_result1.asnumpy())
expect_result2 = Tensor([[[[108]]], [[[270]]], [[[432]]]], mstype.float32)
assert np.allclose(result2.asnumpy(), expect_result2.asnumpy())
expect_result3 = Tensor([[[6, 6, 6, 6, 6, 6], [6, 6, 6, 6, 6, 6], [6, 6, 6, 6, 6, 6]],
[[15, 15, 15, 15, 15, 15], [15, 15, 15, 15, 15, 15], [15, 15, 15, 15, 15, 15]],
[[24, 24, 24, 24, 24, 24], [24, 24, 24, 24, 24, 24], [24, 24, 24, 24, 24, 24]]],
mstype.float32)
assert np.allclose(result3.asnumpy(), expect_result3.asnumpy())
expect_result4 = Tensor([[[[6, 6, 6, 6, 6, 6]], [[6, 6, 6, 6, 6, 6]], [[6, 6, 6, 6, 6, 6]]],
[[[15, 15, 15, 15, 15, 15]], [[15, 15, 15, 15, 15, 15]], [[15, 15, 15, 15, 15, 15]]],
[[[24, 24, 24, 24, 24, 24]], [[24, 24, 24, 24, 24, 24]], [[24, 24, 24, 24, 24, 24]]]],
mstype.float32)
assert np.allclose(result4.asnumpy(), expect_result4.asnumpy())
expect_result5 = Tensor([[18, 18, 18, 18, 18, 18], [45, 45, 45, 45, 45, 45], [72, 72, 72, 72, 72, 72]],
mstype.float32)
assert np.allclose(result5.asnumpy(), expect_result5.asnumpy())
expect_result6 = Tensor([[[[18, 18, 18, 18, 18, 18]]], [[[45, 45, 45, 45, 45, 45]]], [[[72, 72, 72, 72, 72, 72]]]],
mstype.float32)
assert np.allclose(result6.asnumpy(), expect_result6.asnumpy())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_general_rule():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. The general VmapRule.
2. The specific VmapRule of `Reshape` operation.
3. The same `vmap` object is called multiple times.
4. The `mindspore.numpy` objects as the arguments.
Expectation: success
"""
def convolve(x, w):
output = []
for i in range(1, len(x) - 1):
output.append(mnp.dot(x[i - 1 : i + 2], w))
return mnp.stack(output)
x = mnp.arange(5).astype('float32')
w = mnp.array([1., 2., 3.])
vmap_function = vmap(convolve)
x1 = mnp.stack([x, x, x])
w1 = mnp.stack([w, w, w])
result1 = vmap_function(x1, w1)
expect_result1 = Tensor([[8, 14, 20], [8, 14, 20], [8, 14, 20]], mstype.float32)
assert np.allclose(result1.asnumpy(), expect_result1.asnumpy())
x2 = mnp.stack([x, x + 1, x + 2])
w2 = mnp.stack([w, w * 2, w * 3])
result2 = vmap_function(x2, w2)
expect_result2 = Tensor([[8, 14, 20], [28, 40, 52], [60, 78, 96]], mstype.float32)
assert np.allclose(result2.asnumpy(), expect_result2.asnumpy())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_nested_axes():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. The nested inputs as the vmap's arguments.
2. One element of the `in_axes` is a minus integer.
3. Some outputs of the function is scalars with destination axis non-None.
4. The `in_axes` is nested Tuple and List.
5. VmapRule for that operators with indefinite length as input, such as `Stack`.
Expectation: success
"""
class AddNet(nn.Cell):
def __init__(self):
super(AddNet, self).__init__()
self.inner_tensor = Tensor([5, 6], mstype.float32)
self.inner_para = Parameter(Tensor([5, 6], mstype.float32), name='inner_para')
def construct(self, x, y):
a = 1
b = 2
c = 3
d = self.inner_tensor + a
e = F.stack((self.inner_para, self.inner_para))
return ((a, b), c), d, e
x_hat = Tensor([[1, 2, 3], [4, 5, 6]], mstype.float32)
y_hat = Tensor([[1, 2, 3], [4, 5, 6]], mstype.float32)
z_hat = 1
((res1, res2), res3), res4, res5 = \
vmap(AddNet(), in_axes=(1, [-1, None]), out_axes=((0, None), 0, None))(x_hat, (y_hat, z_hat))
expect_res1 = Tensor([1, 1, 1], mstype.float32)
expect_res2 = Tensor([2, 2, 2], mstype.float32)
expect_res3 = 3
expect_res4 = Tensor([[6, 7], [6, 7], [6, 7]], mstype.float32)
expect_res5 = Tensor([[5, 6], [5, 6]], mstype.float32)
assert np.allclose(res1.asnumpy(), expect_res1.asnumpy())
assert np.allclose(res2.asnumpy(), expect_res2.asnumpy())
assert res3 == expect_res3
assert np.allclose(res4.asnumpy(), expect_res4.asnumpy())
assert np.allclose(res5.asnumpy(), expect_res5.asnumpy())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_with_tuple_input():
"""
Feature: vmap
Description: When vmap use tuple inputs in graph, it must ensure the inputs is not eliminated.
Expectation: success
"""
def real_fn(x, y):
return x * y
def foo(fn):
@jit
def wrapped(*args):
def fn2(x, y):
return F.jvp(fn, x, y)
res = F.vmap(fn2)(args, args)
return res
return wrapped
shape = (2, 3)
a = F.ones(shape, mstype.int32)
b = F.ones(shape, mstype.int32) * 2
res = foo(real_fn)(a, b)
assert isinstance(res, tuple)
assert len(res) == 2
assert isinstance(res[0], Tensor)
assert isinstance(res[1], Tensor)
assert np.allclose(res[0].asnumpy(), np.array([[2, 2, 2], [2, 2, 2]]))
assert np.allclose(res[1].asnumpy(), np.array([[4, 4, 4], [4, 4, 4]]))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_with_celllist_input():
"""
Feature: vmap
Description: When vmap use celllist inputs in graph, it is executing the model ensembling parallel scenario.
Expectation: success
"""
class AssignNet(nn.Cell):
def __init__(self):
super(AssignNet, self).__init__()
self.assign = P.Assign()
self.ref_a = Parameter(Tensor([0, 1, 2], mstype.float32), name='ref_a')
self.ref_b = Parameter(Tensor([0, 1, 2], mstype.float32), name='ref_b')
def construct(self, replace_tensor):
self.assign(self.ref_a, replace_tensor)
out = self.ref_b + self.ref_a
return out
if platform.system() == "Linux":
m1 = AssignNet()
m2 = AssignNet()
m3 = AssignNet()
mm = nn.CellList([m1, m2, m3])
replace_tensor = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], mstype.float32)
output = F.vmap(mm, 0)(replace_tensor)
expect_res1 = Tensor([[1, 3, 5], [4, 6, 8], [7, 9, 11]], mstype.float32)
expect_res2 = Tensor([1, 2, 3], mstype.float32)
expect_res3 = Tensor([4, 5, 6], mstype.float32)
expect_res4 = Tensor([7, 8, 9], mstype.float32)
expect_res5 = Tensor([0, 1, 2], mstype.float32)
assert np.allclose(output.asnumpy(), expect_res1.asnumpy())
assert np.allclose(m1.ref_a.asnumpy(), expect_res2.asnumpy())
assert np.allclose(m2.ref_a.asnumpy(), expect_res3.asnumpy())
assert np.allclose(m3.ref_a.asnumpy(), expect_res4.asnumpy())
assert np.allclose(m1.ref_b.asnumpy(), expect_res5.asnumpy())
assert np.allclose(m2.ref_b.asnumpy(), expect_res5.asnumpy())
assert np.allclose(m3.ref_b.asnumpy(), expect_res5.asnumpy())
else:
pass
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_as_vmap_input():
"""
Feature: vmap
Description: When the output of a vmap function is used as the input of another vmap function.
Expectation: success
"""
class VmapNet(nn.Cell):
def __init__(self):
super(VmapNet, self).__init__()
self.tensor = Tensor(np.ones((3, 4), dtype=int), mstype.float32)
self.matmul_vmap = F.vmap(F.matmul, in_axes=(1, None), out_axes=1)
self.relu_vmap = F.vmap(nn.ReLU(), in_axes=1, out_axes=1)
def construct(self, x):
x = self.matmul_vmap(x, self.tensor)
x = self.relu_vmap(x)
return x
x = Tensor(np.ones((4, 4, 3), dtype=int), mstype.float32)
output = VmapNet()(x)
expect_res = Tensor(np.ones((4, 4, 4), dtype=int), mstype.float32) * 3
assert np.allclose(output.asnumpy(), expect_res.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vmap_with_celllist_nested_grad():
"""
Feature: vmap
Description: This case mainly tests the following `vmap` application scenarios in graph mode:
1. `vmap` and `grad` are used in combination.
2. `vmap` accepts celllist type inputs.
Expectation: success
"""
class AssignNet(nn.Cell):
def __init__(self):
super(AssignNet, self).__init__()
self.assign = P.Assign()
self.ref_a = Parameter(Tensor([0, 1, 2], mstype.float32), name='ref_a')
def construct(self, replace_tensor):
replace_tensor = replace_tensor * 2
self.assign(self.ref_a, replace_tensor)
out = self.ref_a + replace_tensor
return out
if platform.system() == "Linux":
m1 = AssignNet()
m2 = AssignNet()
m3 = AssignNet()
mm = nn.CellList([m1, m2, m3])
vmap_net = F.vmap(mm)
replace_tensor = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], mstype.float32)
output_grad = F.grad(vmap_net)(replace_tensor)
expect_res = Tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], mstype.float32)
assert np.allclose(output_grad.asnumpy(), expect_res.asnumpy())
else:
pass