mindspore/mindspore/ops/operations/thor_ops.py

304 lines
8.3 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""thor_ops"""
import mindspore as ms
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C
__all__ = ["CusBatchMatMul",
"CusCholeskyTrsm",
"CusFusedAbsMax1",
"CusImg2Col",
"CusMatMulCubeDenseLeft",
"CusMatMulCubeFraczRightMul",
"CusMatMulCube",
"CusMatrixCombine",
"CusTranspose02314",
"CusMatMulCubeDenseRight",
"CusMatMulCubeFraczLeftCast",
]
class CusBatchMatMul(PrimitiveWithInfer):
"""CusBatchMatMul definition"""
@prim_attr_register
def __init__(self):
"""init CusBatchMatMul"""
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
def get_bprop(self):
def bprop(x1, x2, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2))
return bprop
def infer_shape(self, data1_shape, data2_shape):
return data1_shape
def infer_dtype(self, data1_dtype, data2_dtype):
return data1_dtype
class CusCholeskyTrsm(PrimitiveWithInfer):
"""CusCholeskyTrsm definition"""
@prim_attr_register
def __init__(self):
"""init CusCholeskyTrsm"""
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
def infer_shape(self, data1_shape):
ll = []
m, _ = data1_shape
if m >= 128:
ll = [m // 128, 128, 128]
else:
ll = [1, 64, 64]
return ll
def infer_dtype(self, data1_dtype):
return data1_dtype
class CusFusedAbsMax1(PrimitiveWithInfer):
"""CusFusedAbsMax1 definition"""
@prim_attr_register
def __init__(self, origin_shape=[-1, -1]):
"""init CusFusedAbsMax1"""
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
self.origin_shape = origin_shape
def get_bprop(self):
def bprop(x, out, dout):
return (C.zeros_like(x),)
return bprop
def infer_shape(self, data1_shape):
ll = []
if len(data1_shape) == 2:
ll = [1,]
else:
ll = [32, 64]
return ll
def infer_dtype(self, data1_dtype):
return data1_dtype
class CusImg2Col(PrimitiveWithInfer):
"""CusImg2Col definition"""
@prim_attr_register
def __init__(self, ksizes, strides, dilates=(1, 1, 1, 1), mode="NC1HWC0"):
"""init CusImg2Col"""
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
self.ksizes = ksizes
self.strides = strides
self.dilates = dilates
self.mode = mode
def get_bprop(self):
def bprop(x, out, dout):
return (C.zeros_like(x),)
return bprop
def infer_shape(self, data1_shape):
bs, c, h, w = data1_shape
_, stride_h, stride_w, _ = self.strides
_, k_w, k_h, _ = self.ksizes
# assert m == n
c0 = 16
c1 = c // 16
if c1 == 0:
c1 = 1
shape = [bs * int(h // stride_h) * int(w // stride_w), k_w * k_h * c1 * c0]
return shape
def infer_dtype(self, data1_dtype):
return data1_dtype
class CusMatMulCubeDenseLeft(PrimitiveWithInfer):
"""CusMatMulCube definition"""
@prim_attr_register
def __init__(self):
"""init CusMatMulCubeDenseLeft"""
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
def get_bprop(self):
def bprop(x1, x2, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2))
return bprop
def infer_shape(self, data1_shape, data2_shape):
return data2_shape
def infer_dtype(self, data1_dtype, data2_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float16"))
class CusMatMulCubeFraczRightMul(PrimitiveWithInfer):
"""CusMatMulCubeFraczRightMul definition"""
@prim_attr_register
def __init__(self):
"""init CusMatMulCubeFraczRightMul"""
self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
def get_bprop(self):
def bprop(x1, x2, x3, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
return bprop
def infer_shape(self, data1_shape, data2_shape, data3_shape):
return data1_shape
def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
class CusMatMulCube(PrimitiveWithInfer):
"""CusMatMulCube definition"""
@prim_attr_register
def __init__(self, transpose_a=False, transpose_b=False):
"""init CusMatMulCube"""
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
self.transpose_a = transpose_a
self.transpose_b = transpose_b
def get_bprop(self):
def bprop(x1, x2, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2))
return bprop
def infer_shape(self, data1_shape, data2_shape):
# shape = [1, data1_shape[1], data2_shape[2], 16, 16]
# return shape
if self.transpose_a:
k1, m = data1_shape
else:
m, k1 = data1_shape
if self.transpose_b:
n, k2 = data2_shape
else:
k2, n = data2_shape
assert k1 == k2
shape = [m, n]
return shape
def infer_dtype(self, data1_dtype, data2_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
class CusMatrixCombine(PrimitiveWithInfer):
"""CusMatrixCombine definition"""
@prim_attr_register
def __init__(self):
"""init CusMatrixCombine"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
def get_bprop(self):
def bprop(x, out, dout):
return (C.zeros_like(x),)
return bprop
def infer_shape(self, data_shape):
a, b, c = data_shape
shape = [a * b, a * c]
return shape
def infer_dtype(self, data_dtype):
return data_dtype
class CusTranspose02314(PrimitiveWithInfer):
"""CusTranspose02314 definition"""
@prim_attr_register
def __init__(self):
"""init CusTranspose02314"""
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
def get_bprop(self):
def bprop(x, out, dout):
return (C.zeros_like(x),)
return bprop
def infer_shape(self, data1_shape):
assert len(data1_shape) == 4
n, c, h, w = data1_shape
c0 = 16
c1 = c // 16
shape = (n * h * w, c1 * c0)
return shape
def infer_dtype(self, data1_dtype):
return data1_dtype
class CusMatMulCubeDenseRight(PrimitiveWithInfer):
"""CusMatMulCubeDenseRight definition"""
@prim_attr_register
def __init__(self):
"""init CusMatMulCubeDenseRight"""
self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
def get_bprop(self):
def bprop(x1, x2, x3, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
return bprop
def infer_shape(self, data1_shape, data2_shape, data3_shape):
return data1_shape
def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
class CusMatMulCubeFraczLeftCast(PrimitiveWithInfer):
"""CusMatMulCubeFraczLeftCast definition"""
@prim_attr_register
def __init__(self):
"""init CusMatMulCubeFraczLeftCast"""
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
def get_bprop(self):
def bprop(x1, x2, out, dout):
return (C.zeros_like(x1), C.zeros_like(x2))
return bprop
def infer_shape(self, data1_shape, data2_shape):
return data2_shape
def infer_dtype(self, data1_dtype, data2_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float16"))