forked from mindspore-Ecosystem/mindspore
52 lines
2.4 KiB
Python
52 lines
2.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""evaluation."""
|
|
import argparse
|
|
from mindspore import context
|
|
from mindspore import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
from src.md_dataset import create_dataset
|
|
from src.losses import OhemLoss
|
|
from src.miou_precision import MiouPrecision
|
|
from src.deeplabv3 import deeplabv3_resnet50
|
|
from src.config import config
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Deeplabv3 evaluation")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
|
parser.add_argument('--data_url', required=True, default=None, help='Evaluation data url')
|
|
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
|
|
|
|
args_opt = parser.parse_args()
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
print(args_opt)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args_opt.crop_size = config.crop_size
|
|
args_opt.base_size = config.crop_size
|
|
eval_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="eval")
|
|
net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size],
|
|
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
|
|
decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride,
|
|
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid)
|
|
param_dict = load_checkpoint(args_opt.checkpoint_url)
|
|
load_param_into_net(net, param_dict)
|
|
mIou = MiouPrecision(config.seg_num_classes)
|
|
metrics = {'mIou': mIou}
|
|
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
|
|
model = Model(net, loss, metrics=metrics)
|
|
model.eval(eval_dataset)
|