forked from mindspore-Ecosystem/mindspore
Compare commits
15 Commits
master
...
r2.0.0-bet
Author | SHA1 | Date |
---|---|---|
i-robot | 116e412c77 | |
yao_yf | 21db255136 | |
jjfeing | 8c5540b2d9 | |
lianliguang | d3a0058b3c | |
huangxinjing | 5616affff6 | |
yao_yf | 4e42992cc1 | |
huangxinjing | aa905d51af | |
yao_yf | dd773cb404 | |
huangxinjing | a04b337d78 | |
yao_yf | 99e515bd3c | |
huangxinjing | b173979362 | |
huangxinjing | 0969fd6240 | |
huangxinjing | fc7346ffad | |
huangxinjing | d2633466ec | |
yanghaoran | 44146fb260 |
|
@ -283,3 +283,4 @@
|
|||
{"op_name": "QuantDTypeCast", "inputs": [{"index": 0, "name": "x", "param_type": "required"},{"index": 1, "name": "scales", "param_type": "required"},{"index": 2, "name": "zps", "param_type": "required"},{"index": 3, "name": "mean_corrs", "param_type": "required"},{"index": 4, "name": "var_corr", "param_type": "required"}], "outputs": [{"index": 0, "name": "y", "param_type": "required"}], "attr": [{"name": "src_t", "type": "int"},{"name": "dst_t", "type": "int"},{"name": "axis", "type": "int"}], "fusion_type": "OPAQUE", "dtype_format": [[["int8", "DefaultFormat"], ["float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]],[["int8", "DefaultFormat"], ["float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float16", "FRACTAL_NZ"]]], "imply_type": "AiCPU"}
|
||||
{"op_name": "FSEDecode", "inputs": [{"index": 0, "name": "x", "param_type": "required"},{"index": 1, "name": "states_table", "param_type": "required"},{"index": 2, "name": "bit_count_table", "param_type": "required"},{"index": 3, "name": "symbol_table", "param_type": "required"},{"index": 4, "name": "centroids", "param_type": "required"},{"index": 5, "name": "input_shape", "param_type": "required"}], "outputs": [{"index": 0, "name": "y", "param_type": "required"}], "attr": [{"name": "dst_t", "type": "int"}, {"name": "curr_chunk", "type": "int"}, {"name": "curr_chunk_index", "type": "int"}, {"name": "curr_bit_count", "type": "int"}, {"name": "table_log", "type": "int"}], "fusion_type": "OPAQUE", "dtype_format": [[["int8", "DefaultFormat"], ["uint16", "DefaultFormat"], ["uint8", "DefaultFormat"], ["uint16", "DefaultFormat"], ["float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float32", "DefaultFormat"]],[["int8", "DefaultFormat"], ["uint16", "DefaultFormat"], ["uint8", "DefaultFormat"], ["uint16", "DefaultFormat"], ["float32", "DefaultFormat"], ["int32", "DefaultFormat"], ["float16", "FRACTAL_NZ"]]], "imply_type": "AiCPU"}
|
||||
{"op_name": "AssignAdd", "inputs": [{"index": 0, "name": "ref", "needCompile": false, "paramType": "required", "shape": "all"}, {"index": 1, "name": "value", "needCompile": false, "paramType": "required", "shape": "all"}], "outputs": [{"index": 0, "name": "ref", "need_compile": false, "paramType": "required", "shape": "all"}], "attr": [], "fusion_type": "OPAQUE", "dtype_format": [[["int8", "DefaultFormat"], ["int8", "DefaultFormat"], ["int8", "DefaultFormat"]], [["int8", "NC1HWC0"], ["int8", "NC1HWC0"], ["int8", "NC1HWC0"]], [["int8", "C1HWNCoC0"], ["int8", "C1HWNCoC0"], ["int8", "C1HWNCoC0"]], [["int8", "FRACTAL_Z"], ["int8", "FRACTAL_Z"], ["int8", "FRACTAL_Z"]], [["uint8", "DefaultFormat"], ["uint8", "DefaultFormat"], ["uint8", "DefaultFormat"]], [["uint8", "NC1HWC0"], ["uint8", "NC1HWC0"], ["uint8", "NC1HWC0"]], [["uint8", "C1HWNCoC0"], ["uint8", "C1HWNCoC0"], ["uint8", "C1HWNCoC0"]], [["uint8", "FRACTAL_Z"], ["uint8", "FRACTAL_Z"], ["uint8", "FRACTAL_Z"]], [["int32", "DefaultFormat"], ["int32", "DefaultFormat"], ["int32", "DefaultFormat"]], [["int32", "NC1HWC0"], ["int32", "NC1HWC0"], ["int32", "NC1HWC0"]], [["int32", "C1HWNCoC0"], ["int32", "C1HWNCoC0"], ["int32", "C1HWNCoC0"]], [["int32", "FRACTAL_Z"], ["int32", "FRACTAL_Z"], ["int32", "FRACTAL_Z"]], [["int64", "DefaultFormat"], ["int64", "DefaultFormat"], ["int64", "DefaultFormat"]], [["int64", "NC1HWC0"], ["int64", "NC1HWC0"], ["int64", "NC1HWC0"]], [["int64", "C1HWNCoC0"], ["int64", "C1HWNCoC0"], ["int64", "C1HWNCoC0"]], [["int64", "FRACTAL_Z"], ["int64", "FRACTAL_Z"], ["int64", "FRACTAL_Z"]], [["float16", "DefaultFormat"], ["float16", "DefaultFormat"], ["float16", "DefaultFormat"]], [["float16", "NC1HWC0"], ["float16", "NC1HWC0"], ["float16", "NC1HWC0"]], [["float16", "C1HWNCoC0"], ["float16", "C1HWNCoC0"], ["float16", "C1HWNCoC0"]], [["float16", "FRACTAL_Z"], ["float16", "FRACTAL_Z"], ["float16", "FRACTAL_Z"]], [["float32", "DefaultFormat"], ["float32", "DefaultFormat"], ["float32", "DefaultFormat"]], [["float32", "NC1HWC0"], ["float32", "NC1HWC0"], ["float32", "NC1HWC0"]], [["float32", "C1HWNCoC0"], ["float32", "C1HWNCoC0"], ["float32", "C1HWNCoC0"]], [["float32", "FRACTAL_Z"], ["float32", "FRACTAL_Z"], ["float32", "FRACTAL_Z"]]], "imply_type": "TBE", "async_flag": false, "binfile": "assign_add.so", "compute_cost": 10, "kernel": "assign_add", "partial_flag": true, "reshape_type": "", "dynamicRankSupport": false, "dynamicShapeSupport": true, "dynamicCompileStatic": true, "needCheckSupport": false, "dynamicFormat": false, "op_pattern": "", "real_input_index": [], "input_to_attr_index": [], "unknown_shape_formats": []}
|
||||
{'op_name': 'AtomicAddrClean', 'inputs': [], 'outputs': [], 'attr': [{'name': 'automic_add_mem_size', 'paramType': 'required', 'type': 'listInt64', 'value': 'all'}], 'fusion_type': 'ELEMWISE', 'dtype_format': [], 'imply_type': 'TBE', 'async_flag': False, 'binfile': 'atomic_addr_clean.so', 'compute_cost': 10, 'kernel': 'atomic_addr_clean', 'partial_flag': True, 'reshape_type': '', 'dynamicRankSupport': False, 'dynamicShapeSupport': False, 'dynamicCompileStatic': False, 'needCheckSupport': False, 'dynamicFormat': False, 'op_pattern': '', 'real_input_index': [], 'input_to_attr_index': [], 'unknown_shape_formats': []}
|
||||
|
|
|
@ -415,7 +415,8 @@
|
|||
"TransData ": "support boll",
|
||||
"ScatterNdD ": "Accuracy issues",
|
||||
"Trace": "Hadn't adapted tbe implementation",
|
||||
"AssignAdd": "Frac_nz in pangu not support"
|
||||
"AssignAdd": "Frac_nz in pangu not support",
|
||||
"AtomicAddrClean": "need to clean addr larger than 2G, int32 is not enough"
|
||||
},
|
||||
"SkipNodes": [
|
||||
"BroadcastTo",
|
||||
|
@ -444,7 +445,9 @@
|
|||
"ACos",
|
||||
"TransData",
|
||||
"ScatterNdD",
|
||||
"AssignAdd"
|
||||
"AssignAdd",
|
||||
"Assign",
|
||||
"AtomicAddrClean"
|
||||
],
|
||||
"FallbackOps": {
|
||||
"DeformableOffsets": [
|
||||
|
|
|
@ -8,10 +8,12 @@
|
|||
|
||||
.. code-block::
|
||||
|
||||
n02119789 0
|
||||
n02100735 1
|
||||
n02110185 2
|
||||
n02096294 3
|
||||
n01440764 0
|
||||
n01443537 1
|
||||
n01484850 2
|
||||
n01491361 3
|
||||
...
|
||||
n15075141 999
|
||||
|
||||
- **image_dir** (str) - ImageNet数据集的目录路径,目录中包含类似n02119789、n02100735、n02110185和n02096294的子目录。
|
||||
- **destination** (str) - 转换生成的MindRecord文件路径,需提前创建目录并且目录下不能存在同名文件。
|
||||
|
|
|
@ -104,6 +104,10 @@ void SetStridedSliceStrategy(const AnfNodePtr &node) {
|
|||
if (skip_redis && !full_batch && input_strategy.size() > 0) {
|
||||
input_strategy[0] = dev_num < shape_list[1][0][0] ? dev_num : shape_list[1][0][0];
|
||||
auto prim = GetCNodePrimitive(node);
|
||||
if (prim->HasAttr("out_shard_size")) {
|
||||
auto out_shard_size = GetValue<int64_t>(prim->GetAttr("out_shard_size"));
|
||||
input_strategy[0] = out_shard_size;
|
||||
}
|
||||
auto attrs = prim->attrs();
|
||||
attrs[parallel::SKIP_REDISTRIBUTION] = MakeValue<bool>(true);
|
||||
prim->SetAttrs(attrs);
|
||||
|
|
|
@ -354,6 +354,7 @@ Status GatherInfo::CheckStrategy(const StrategyPtr &strategy) {
|
|||
|
||||
// parameter not split axis
|
||||
if (param_strategy.at(LongToSize(axis_)) == 1) {
|
||||
SetAttribute(strategy);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
@ -456,21 +456,11 @@ void AddCommOpMeanFlag(const CNodePtr &comm_node) {
|
|||
(void)prim->SetAttrs(attrs);
|
||||
}
|
||||
|
||||
void AddCommOpMirrorFlag(const CNodePtr &comm_node, bool do_mirror) {
|
||||
void AddCNodePrimAttr(const CNodePtr &comm_node, const std::string &attr_name, const ValuePtr &attr_val) {
|
||||
MS_EXCEPTION_IF_NULL(comm_node);
|
||||
auto prim = GetValueNode<PrimitivePtr>(comm_node->input(0));
|
||||
auto attrs = prim->attrs();
|
||||
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
|
||||
attrs[DO_MIRROR] = MakeValue<bool>(do_mirror);
|
||||
(void)prim->SetAttrs(attrs);
|
||||
}
|
||||
|
||||
void AddCommOpAddAccuFlag(const CNodePtr &comm_node, bool add_accu) {
|
||||
MS_EXCEPTION_IF_NULL(comm_node);
|
||||
auto prim = GetValueNode<PrimitivePtr>(comm_node->input(0));
|
||||
auto attrs = prim->attrs();
|
||||
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
|
||||
attrs[ADD_ACCU] = MakeValue<bool>(add_accu);
|
||||
attrs[attr_name] = attr_val;
|
||||
(void)prim->SetAttrs(attrs);
|
||||
}
|
||||
|
||||
|
|
|
@ -351,9 +351,8 @@ Operator CreateAllGatherOp(const std::string &group);
|
|||
Operator CreateCastOp(TypePtr type);
|
||||
Operator CreateDivOp(float scale);
|
||||
Operator CreateMiniStepAllGatherOp(const std::string &group);
|
||||
void AddCNodePrimAttr(const CNodePtr &comm_node, const std::string &attr_name, const ValuePtr &attr_val);
|
||||
int32_t AddCommOpFusionType(const CNodePtr &comm_node, const AnfNodePtr ¶m_node);
|
||||
void AddCommOpMirrorFlag(const CNodePtr &comm_node, bool do_mirror);
|
||||
void AddCommOpAddAccuFlag(const CNodePtr &comm_node, bool add_accu);
|
||||
Operator CreateMicroStepAllGatherOp(const std::string &group);
|
||||
void AddCommOpMeanFlag(const CNodePtr &comm_node);
|
||||
void AddCommOpParamFlag(const CNodePtr &comm_node);
|
||||
|
|
|
@ -117,9 +117,9 @@ class OptParamMgrImpl : public OptParamMgr {
|
|||
return false;
|
||||
}
|
||||
|
||||
if (!ParameterRequireGrad(parameter)) {
|
||||
// only trainable parameters need parallel optimizer
|
||||
MS_LOG(INFO) << "Parallel optimizer: " << parameter->ToString() << " is not trainable parameter.";
|
||||
auto param_ptr = parameter->cast<ParameterPtr>();
|
||||
if ((!param_ptr) || (!param_ptr->has_default())) {
|
||||
MS_LOG(INFO) << "Parallel optimizer: " << parameter->ToString() << " is not a parameter.";
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -396,10 +396,13 @@ void SliceParameterObj(const ParameterPtr ¶meter, const TensorLayoutPtr &ten
|
|||
// create python layout obj
|
||||
const auto &device_arrangement = tensor_layout->device_arrangement().array();
|
||||
const auto &tensor_map = tensor_layout->tensor_map().array();
|
||||
const auto &slice_shape = tensor_layout->slice_shape().array();
|
||||
auto slice_shape = tensor_layout->slice_shape().array();
|
||||
int64_t field_size = tensor_layout->get_field_size();
|
||||
bool uniform_split = tensor_layout->uniform_split();
|
||||
std::string opt_shard_group = tensor_layout->opt_shard_group();
|
||||
if (!opt_shard_group.empty()) {
|
||||
slice_shape = tensor_layout->opt_shard_slice_shape();
|
||||
}
|
||||
py::tuple layout =
|
||||
py::make_tuple(device_arrangement, tensor_map, slice_shape, field_size, uniform_split, opt_shard_group);
|
||||
|
||||
|
|
|
@ -1265,12 +1265,18 @@ static void InsertAllGatherOp(const FuncGraphPtr &root, const std::string &group
|
|||
op = CreateAllGatherOp(group);
|
||||
}
|
||||
CNodePtr cast_node = InsertAllGatherAfterCast(cnode);
|
||||
std::string opt_shard_mirror_group;
|
||||
bool is_with_mirror = false;
|
||||
auto param_ptr = node->cast<ParameterPtr>();
|
||||
MS_EXCEPTION_IF_NULL(param_ptr);
|
||||
if (param_ptr->user_data<TensorLayout>()) {
|
||||
opt_shard_mirror_group = param_ptr->user_data<TensorLayout>()->opt_shard_mirror_group();
|
||||
auto opt_shard_mirror_group = param_ptr->user_data<TensorLayout>()->opt_shard_mirror_group();
|
||||
is_with_mirror = !opt_shard_mirror_group.empty();
|
||||
if (!param_ptr->param_info()->parallel_optimizer()) {
|
||||
auto mirror_group = mirror_group_list(param_ptr->user_data<TensorLayout>());
|
||||
is_with_mirror = mirror_group.size() > 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_shared_param && cast_node) {
|
||||
allgather = ReplaceNode(op, cast_node, graph, PARALLEL_OPTIMIZER_ALLGATHER_NOT_COMPUTE, param_name, root);
|
||||
MS_LOG(INFO) << "Parallel optimizer is applied before Cast for " << param_name;
|
||||
|
@ -1294,16 +1300,16 @@ static void InsertAllGatherOp(const FuncGraphPtr &root, const std::string &group
|
|||
AddNodeFusionInfo(cnode, allgather, "reduce_scatter", fusion_id);
|
||||
// add gradients mean
|
||||
AddCommOpMeanFlag(allgather);
|
||||
AddCNodePrimAttr(allgather, "with_mirror_operator", MakeValue<bool>(is_with_mirror));
|
||||
if (op_name == MICRO_STEP_ALL_GATHER) {
|
||||
// When grad_accumulation_shard is enabled, the ReduceScatter is inserted at each micro step
|
||||
// so no need to do backward for the micro_step_allgather
|
||||
AddCommOpMirrorFlag(allgather, !grad_accumulation_shard);
|
||||
AddCNodePrimAttr(allgather, DO_MIRROR, MakeValue<bool>(!grad_accumulation_shard));
|
||||
} else if (op_name == MINI_STEP_ALL_GATHER) {
|
||||
// We need to manually set the add_accu to be false if it's father node is MirrorMiniStep
|
||||
bool add_accu = root->has_flag(kAccumulation);
|
||||
bool is_with_mirror = opt_shard_mirror_group.size() > 1;
|
||||
AddCommOpAddAccuFlag(allgather, !add_accu && !is_with_mirror);
|
||||
AddCommOpMirrorFlag(allgather, grad_accumulation_shard || !add_accu);
|
||||
AddCNodePrimAttr(allgather, ADD_ACCU, MakeValue<bool>(!add_accu && !is_with_mirror));
|
||||
AddCNodePrimAttr(allgather, DO_MIRROR, MakeValue<bool>(!grad_accumulation_shard || !add_accu));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1311,17 +1317,20 @@ static void ApplyParallelOptOnParam(const FuncGraphPtr &root, const AnfNodePtr &
|
|||
const std::string &opt_shard_group) {
|
||||
int32_t split_stage_num = ParallelContext::GetInstance()->pipeline_stage_split_num();
|
||||
auto enable_opt_shard = ParallelContext::GetInstance()->enable_parallel_optimizer();
|
||||
if ((opt_shard_group.empty() && split_stage_num <= 1) || (!enable_opt_shard) || (!ParameterRequireGrad(parameter))) {
|
||||
if ((opt_shard_group.empty() && split_stage_num <= 1) || (!enable_opt_shard)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (opt_shard_group.empty() && !ParameterRequireGrad(parameter)) {
|
||||
return;
|
||||
}
|
||||
// set all gather type
|
||||
MS_EXCEPTION_IF_NULL(parameter);
|
||||
int64_t grad_accumulation_step = ParallelContext::GetInstance()->grad_accumulation_step();
|
||||
std::string op_name;
|
||||
if (grad_accumulation_step > 1) {
|
||||
op_name = MINI_STEP_ALL_GATHER;
|
||||
} else if (split_stage_num > 1) {
|
||||
} else if (split_stage_num > 1 && ParameterRequireGrad(parameter)) {
|
||||
op_name = MICRO_STEP_ALL_GATHER;
|
||||
} else {
|
||||
op_name = ALL_GATHER;
|
||||
|
|
|
@ -1515,6 +1515,17 @@ TensorLayout GetInputLayoutFromCNode(const std::pair<AnfNodePtr, int64_t> &node_
|
|||
return tensorlayout_in;
|
||||
}
|
||||
|
||||
Shape mirror_group_list(const TensorLayoutPtr &layout) {
|
||||
int64_t rank = g_device_manager->global_rank();
|
||||
auto stage_dev_list = g_device_manager->GetDeviceListInThisStage();
|
||||
DeviceMatrix dev_matrix(rank, stage_dev_list, layout->device_arrangement().array());
|
||||
RankList group_devices;
|
||||
if (dev_matrix.GetDevicesByTensorMap(layout->tensor_map().array(), &group_devices) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << "For layout:" << layout->ToString() << ", infer mirror failed";
|
||||
}
|
||||
return group_devices;
|
||||
}
|
||||
|
||||
std::string GetSerialNumberString(size_t number) {
|
||||
std::string suffix = "th";
|
||||
if (number == kSizeOne) {
|
||||
|
|
|
@ -111,7 +111,7 @@ StrategyPtr GenerateStandAloneStrategy(const Shapes &inputs_shape);
|
|||
StrategyPtr GenerateBatchParallelStrategy(const OperatorInfoPtr operator_, const PrimitivePtr prim);
|
||||
bool IsInsertVirtualOutput(const FuncGraphPtr &root);
|
||||
TensorLayout GetInputLayoutFromCNode(const std::pair<AnfNodePtr, int64_t> &node_pair);
|
||||
|
||||
Shape mirror_group_list(const TensorLayoutPtr &layout);
|
||||
// Transfer number to serial number string
|
||||
std::string GetSerialNumberString(size_t number);
|
||||
} // namespace parallel
|
||||
|
|
|
@ -129,8 +129,9 @@ void BindShardWriter(py::module *m) {
|
|||
return SUCCESS;
|
||||
})
|
||||
.def("write_raw_data",
|
||||
[](ShardWriter &s, std::map<uint64_t, std::vector<py::handle>> &raw_data, vector<vector<uint8_t>> &blob_data,
|
||||
[](ShardWriter &s, std::map<uint64_t, std::vector<py::handle>> &raw_data, vector<py::bytes> &blob_data,
|
||||
bool sign, bool parallel_writer) {
|
||||
// convert the raw_data from dict to json
|
||||
std::map<uint64_t, std::vector<json>> raw_data_json;
|
||||
(void)std::transform(raw_data.begin(), raw_data.end(), std::inserter(raw_data_json, raw_data_json.end()),
|
||||
[](const std::pair<uint64_t, std::vector<py::handle>> &p) {
|
||||
|
@ -141,7 +142,54 @@ void BindShardWriter(py::module *m) {
|
|||
[](const py::handle &obj) { return nlohmann::detail::ToJsonImpl(obj); });
|
||||
return std::make_pair(p.first, std::move(json_raw_data));
|
||||
});
|
||||
THROW_IF_ERROR(s.WriteRawData(raw_data_json, blob_data, sign, parallel_writer));
|
||||
|
||||
// parallel convert blob_data from vector<py::bytes> to vector<vector<uint8_t>>
|
||||
int32_t parallel_convert = kParallelConvert;
|
||||
if (parallel_convert > blob_data.size()) {
|
||||
parallel_convert = blob_data.size();
|
||||
}
|
||||
parallel_convert = parallel_convert != 0 ? parallel_convert : 1;
|
||||
std::vector<std::thread> thread_set(parallel_convert);
|
||||
vector<vector<uint8_t>> vector_blob_data(blob_data.size());
|
||||
uint32_t step = uint32_t(blob_data.size() / parallel_convert);
|
||||
if (blob_data.size() % parallel_convert != 0) {
|
||||
step = step + 1;
|
||||
}
|
||||
for (int x = 0; x < parallel_convert; ++x) {
|
||||
uint32_t start = x * step;
|
||||
uint32_t end = ((x + 1) * step) < blob_data.size() ? ((x + 1) * step) : blob_data.size();
|
||||
thread_set[x] = std::thread([&vector_blob_data, &blob_data, start, end]() {
|
||||
for (auto i = start; i < end; i++) {
|
||||
char *buffer = nullptr;
|
||||
ssize_t length = 0;
|
||||
if (PYBIND11_BYTES_AS_STRING_AND_SIZE(blob_data[i].ptr(), &buffer, &length)) {
|
||||
MS_LOG(ERROR) << "Unable to extract bytes contents!";
|
||||
return FAILED;
|
||||
}
|
||||
vector<uint8_t> blob_data_item(length);
|
||||
if (length < SECUREC_MEM_MAX_LEN) {
|
||||
int ret_code = memcpy_s(&blob_data_item[0], length, buffer, length);
|
||||
if (ret_code != EOK) {
|
||||
MS_LOG(ERROR) << "memcpy_s failed for py::bytes to vector<uint8_t>.";
|
||||
return FAILED;
|
||||
}
|
||||
} else {
|
||||
auto ret_code = std::memcpy(&blob_data_item[0], buffer, length);
|
||||
if (ret_code != &blob_data_item[0]) {
|
||||
MS_LOG(ERROR) << "memcpy failed for py::bytes to vector<uint8_t>.";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
vector_blob_data[i] = blob_data_item;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// wait for the threads join
|
||||
for (int x = 0; x < parallel_convert; ++x) {
|
||||
thread_set[x].join();
|
||||
}
|
||||
THROW_IF_ERROR(s.WriteRawData(raw_data_json, vector_blob_data, sign, parallel_writer));
|
||||
return SUCCESS;
|
||||
})
|
||||
.def("commit", [](ShardWriter &s) {
|
||||
|
|
|
@ -160,6 +160,9 @@ const std::unordered_map<std::string, std::string> kTypesMap = {
|
|||
/// \brief the max number of samples to enable lazy load
|
||||
const uint32_t LAZY_LOAD_THRESHOLD = 5000000;
|
||||
|
||||
/// \brief parallel convert from vector<py::bytes> to vector<vector<uint8_t>>
|
||||
const uint32_t kParallelConvert = 4;
|
||||
|
||||
/// \brief split a string using a character
|
||||
/// \param[in] field target string
|
||||
/// \param[in] separator a character for splitting
|
||||
|
|
|
@ -1500,7 +1500,8 @@ static std::vector<ActionItem> CommonPipeline() {
|
|||
auto parallel_mode = parallel_context->parallel_mode();
|
||||
const bool is_parallel_mode =
|
||||
parallel_mode == parallel::kSemiAutoParallel || parallel_mode == parallel::kAutoParallel;
|
||||
if (!is_cluster_initialized && !is_parallel_mode && pipeline::GetJitLevel() != "O0") {
|
||||
static const auto combine_like_graphs = (common::GetEnv("COMBINE_LIKE_GRAPHS") == "1");
|
||||
if (!is_cluster_initialized && (!is_parallel_mode || combine_like_graphs) && pipeline::GetJitLevel() != "O0") {
|
||||
(void)actions.emplace_back(std::make_pair("combine_like_graphs", CombineLikeGraphs));
|
||||
}
|
||||
|
||||
|
|
|
@ -567,7 +567,7 @@ CNodePtr KernelAdjust::CreateStreamSwitchOp(const std::shared_ptr<session::Kerne
|
|||
ValuePtr cond = MakeValue(condition);
|
||||
common::AnfAlgo::SetNodeAttr(kAttrSwitchCondition, cond, stream_switch_app);
|
||||
// set attr:data_type
|
||||
int data_type = static_cast<int>(RT_SWITCH_INT64);
|
||||
int data_type = static_cast<int>(RT_SWITCH_INT32);
|
||||
ValuePtr dt = MakeValue(data_type);
|
||||
common::AnfAlgo::SetNodeAttr(kAttrDataType, dt, stream_switch_app);
|
||||
// set distinction label and graph id
|
||||
|
|
|
@ -239,11 +239,11 @@ bool IfAtomicOpNeedFusion(const size_t clean_total_num, const CNodePtr &first_no
|
|||
return false;
|
||||
}
|
||||
|
||||
std::vector<int32_t> GetClearSize(const CNodePtr &pre_node) {
|
||||
std::vector<int64_t> GetClearSize(const CNodePtr &pre_node) {
|
||||
MS_EXCEPTION_IF_NULL(pre_node);
|
||||
auto kernel_mod = AnfAlgo::GetKernelMod(pre_node);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod);
|
||||
std::vector<int32_t> clean_size_list;
|
||||
std::vector<int64_t> clean_size_list;
|
||||
constexpr size_t kAlignBytes = 32 - 1;
|
||||
// clean output
|
||||
if (common::AnfAlgo::HasNodeAttr(kAttrAtomicOutputIndexs, pre_node)) {
|
||||
|
@ -251,7 +251,7 @@ std::vector<int32_t> GetClearSize(const CNodePtr &pre_node) {
|
|||
auto output_men_size = kernel_mod->GetOutputSizeList();
|
||||
for (auto index : output_indexes) {
|
||||
auto clean_item =
|
||||
SizeToInt((output_men_size.at(index) + kMemAlignSize + kAlignBytes) / kMemAlignSize * kMemAlignSize);
|
||||
SizeToLong((output_men_size.at(index) + kMemAlignSize + kAlignBytes) / kMemAlignSize * kMemAlignSize);
|
||||
(void)clean_size_list.emplace_back(clean_item);
|
||||
}
|
||||
}
|
||||
|
@ -261,7 +261,7 @@ std::vector<int32_t> GetClearSize(const CNodePtr &pre_node) {
|
|||
auto workspace_men_sizes = kernel_mod->GetWorkspaceSizeList();
|
||||
for (const auto &index : workspace_indexes) {
|
||||
auto clean_item =
|
||||
SizeToInt((workspace_men_sizes.at(index) + kMemAlignSize + kAlignBytes) / kMemAlignSize * kMemAlignSize);
|
||||
SizeToLong((workspace_men_sizes.at(index) + kMemAlignSize + kAlignBytes) / kMemAlignSize * kMemAlignSize);
|
||||
(void)clean_size_list.emplace_back(clean_item);
|
||||
}
|
||||
}
|
||||
|
@ -303,7 +303,7 @@ CNodePtr NewAtomicOp(const CNodePtr &pre_node, const std::vector<AnfNodePtr> &fu
|
|||
}
|
||||
|
||||
void InsertFusionAtomicOp(const CNodePtr &first_clear_node, const std::vector<AnfNodePtr> &fusion_clear_inputs,
|
||||
const std::vector<int32_t> &clean_size_list, CleanOpsMap *clean_ops) {
|
||||
const std::vector<int64_t> &clean_size_list, CleanOpsMap *clean_ops) {
|
||||
MS_EXCEPTION_IF_NULL(first_clear_node);
|
||||
MS_EXCEPTION_IF_NULL(clean_ops);
|
||||
auto clear_zero = NewAtomicOp(first_clear_node, fusion_clear_inputs);
|
||||
|
@ -355,7 +355,7 @@ void SpecialAkgOps(const std::string &op_name, const CNodePtr &node, CleanOpsMap
|
|||
|
||||
void ProcessAtomicFusion(const std::vector<CNodePtr> &kernels, CleanOpsMap *clean_ops) {
|
||||
MS_EXCEPTION_IF_NULL(clean_ops);
|
||||
std::vector<int32_t> clean_size_list;
|
||||
std::vector<int64_t> clean_size_list;
|
||||
std::vector<AnfNodePtr> fusion_clear_inputs;
|
||||
CNodePtr first_node = nullptr;
|
||||
for (const auto &anf_node : kernels) {
|
||||
|
|
|
@ -153,7 +153,7 @@ void TaskGenerator::LaunchAddrCleanKernel(const CNodePtr &anf_node_ptr, AddressP
|
|||
MS_LOG(DEBUG) << "AtomicAddClean clean workspace size:" << clean_workspace_indexs.size();
|
||||
}
|
||||
}
|
||||
auto clear_mems = common::AnfAlgo::GetNodeAttr<std::vector<int32_t>>(anf_node_ptr, kAttrAtomicAddMemSize);
|
||||
auto clear_mems = common::AnfAlgo::GetNodeAttr<std::vector<int64_t>>(anf_node_ptr, kAttrAtomicAddMemSize);
|
||||
if (kernel_inputs->size() != clear_mems.size()) {
|
||||
MS_LOG(EXCEPTION) << "AtomicAddClean kernel inputs size not equal clear memory size, kernel inputs size:"
|
||||
<< kernel_inputs->size() << ",clean mem size" << clear_mems.size();
|
||||
|
|
|
@ -48,6 +48,7 @@ static std::unordered_map<std::string, ATTR_DTYPE> type_attr_dtype_map = {
|
|||
{kVTypeFloat, ATTR_DTYPE::ATTR_FLOAT32},
|
||||
{kVTypeListInt, ATTR_DTYPE::ATTR_LIST_INT32},
|
||||
{kVTypeListFloat, ATTR_DTYPE::ATTR_LIST_FLOAT32},
|
||||
{kVTypeListInt64, ATTR_DTYPE::ATTR_LIST_INT64},
|
||||
{kVTypeListUInt64, ATTR_DTYPE::ATTR_LIST_UINT64},
|
||||
{kVTypeListListInt, ATTR_DTYPE::ATTR_LIST_LIST_INT64}};
|
||||
|
||||
|
@ -181,6 +182,7 @@ bool ParseAttrValue(const std::string &type, const mindspore::ValuePtr &value, n
|
|||
case ATTR_DTYPE::ATTR_FLOAT32:
|
||||
return ParseAttrFloat(value, attr_obj);
|
||||
case ATTR_DTYPE::ATTR_LIST_INT32:
|
||||
case ATTR_DTYPE::ATTR_LIST_INT64:
|
||||
return ParseAttrListInt(value, attr_obj);
|
||||
case ATTR_DTYPE::ATTR_LIST_FLOAT32:
|
||||
return ParseAttrListFloat(value, attr_obj);
|
||||
|
@ -232,7 +234,8 @@ bool ParseAttrDefaultValue(const std::string &type, const std::string &value, nl
|
|||
case ATTR_DTYPE::ATTR_FLOAT32:
|
||||
(*attr_obj)[kJValue] = std::stof(value);
|
||||
break;
|
||||
case ATTR_DTYPE::ATTR_LIST_INT32: {
|
||||
case ATTR_DTYPE::ATTR_LIST_INT32:
|
||||
case ATTR_DTYPE::ATTR_LIST_INT64: {
|
||||
std::stringstream string_value(value);
|
||||
std::string list_elem;
|
||||
std::vector<int64_t> attrs_value;
|
||||
|
|
|
@ -60,6 +60,7 @@ constexpr auto kVTypeFloat32 = "float32";
|
|||
constexpr auto kVTypeListInt = "listInt";
|
||||
constexpr auto kVTypeInt32 = "Int32";
|
||||
constexpr auto kVTypeInt64 = "Int64";
|
||||
constexpr auto kVTypeListInt64 = "listInt64";
|
||||
constexpr auto kVTypeListUInt64 = "listUInt64";
|
||||
constexpr auto kVTypeListFloat = "listFloat";
|
||||
constexpr auto kVTypeListListInt = "listListInt";
|
||||
|
|
|
@ -40,7 +40,7 @@ std::string VecToString(const std::vector<T> &vec) {
|
|||
return res;
|
||||
}
|
||||
|
||||
std::string GenCommOpKey(const CNodePtr &node) {
|
||||
std::string GenCommOpKey(const CNodePtr &node, const KernelGraphPtr &root_graph) {
|
||||
std::string op_key;
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto comm_prim = GetCNodePrimitive(node);
|
||||
|
@ -68,6 +68,8 @@ std::string GenCommOpKey(const CNodePtr &node) {
|
|||
if (comm_prim->HasAttr(kAttrRecvRankIds)) {
|
||||
op_key += "_" + VecToString(GetValue<std::vector<int64_t>>(comm_prim->GetAttr(kAttrRecvRankIds)));
|
||||
}
|
||||
// model identifier, aka. root_graph_id
|
||||
op_key += "_" + std::to_string(root_graph->root_graph_id());
|
||||
MS_LOG(INFO) << node->DebugString() << " key " << op_key;
|
||||
return op_key;
|
||||
}
|
||||
|
@ -198,7 +200,7 @@ void AscendCommOpReuse::AnalyseCommOpReuse() {
|
|||
if (!IsReusable(comm_op)) {
|
||||
continue;
|
||||
}
|
||||
reuse_map[GenCommOpKey(comm_op)].push_back(comm_op);
|
||||
reuse_map[GenCommOpKey(comm_op, root_graph_)].push_back(comm_op);
|
||||
}
|
||||
|
||||
for (const auto &[key, comm_op_set] : reuse_map) {
|
||||
|
@ -255,7 +257,7 @@ KernelGraphPtr AscendCommOpReuse::CreateCommSubGraph(const CNodePtr &comm_op) {
|
|||
MS_EXCEPTION_IF_NULL(new_comm_op);
|
||||
new_comm_op->set_abstract(comm_op->abstract());
|
||||
|
||||
std::string group_name = GenCommOpKey(comm_op);
|
||||
std::string group_name = GenCommOpKey(comm_op, root_graph_);
|
||||
auto rank_list = common::AnfAlgo::GetNodeAttr<std::vector<unsigned int>>(comm_op, kAttrRankList);
|
||||
if (!CommManager::GetInstance().CreateGroupSync(group_name, rank_list)) {
|
||||
MS_LOG(EXCEPTION) << "Create new group " << group_name << " failed, rank list = " << VecToString(rank_list);
|
||||
|
|
|
@ -246,6 +246,8 @@ bool IrExportBuilder::BuildPrimitives() {
|
|||
prim = real_prim;
|
||||
}
|
||||
|
||||
prim_proto->set_instance_name(prim->instance_name());
|
||||
|
||||
// Set primitive attributes
|
||||
for (const auto &attr : prim->attrs()) {
|
||||
MS_LOG(DEBUG) << "attr: " << attr.first << " " << attr.second->DumpText() << " " << attr.second->type_name();
|
||||
|
|
|
@ -2009,16 +2009,16 @@ bool MSANFModelParser::BuildPrimitiveNode(const mind_ir::PrimitiveProto &primiti
|
|||
if (prim_type.compare(0, strlen(kDoSignaturePrimitivePrefix), kDoSignaturePrimitivePrefix) == 0) {
|
||||
auto op_name = prim_type.substr(strlen(kDoSignaturePrimitivePrefix));
|
||||
prim = std::make_shared<prim::DoSignaturePrimitive>(op_name, std::make_shared<Primitive>(op_name));
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
prim->set_instance_name(op_name);
|
||||
} else {
|
||||
MS_LOG(DEBUG) << "Special node_type: " << prim_type;
|
||||
prim = std::make_shared<Primitive>(prim_type);
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
prim->set_instance_name(prim_type);
|
||||
}
|
||||
}
|
||||
|
||||
if (primitive_proto.has_instance_name()) {
|
||||
prim->set_instance_name(primitive_proto.instance_name());
|
||||
}
|
||||
|
||||
// Set primitive attributes
|
||||
auto prim_to_add_attr = GetValueWithoutDoSignature(prim)->cast<PrimitivePtr>();
|
||||
MS_EXCEPTION_IF_NULL(prim_to_add_attr);
|
||||
|
|
|
@ -222,4 +222,5 @@ message PrimitiveProto {
|
|||
optional string name = 1;
|
||||
optional string op_type = 2;
|
||||
repeated AttributeProto attribute = 3;
|
||||
optional string instance_name = 4;
|
||||
}
|
||||
|
|
|
@ -710,7 +710,7 @@ class Parameter(Tensor_):
|
|||
raise TypeError("The argument 'layout' should be tuple, but got {}.".format(type(layout)))
|
||||
if len(layout) < 6:
|
||||
raise ValueError("The length of 'layout' must be larger than 5, but got {}.".format(len(layout)))
|
||||
slice_index = int(_get_slice_index(layout[0], layout[1]))
|
||||
slice_index = int(_get_slice_index(layout[0], layout[1], layout[5]))
|
||||
init_data_args += (slice_index, layout[2], layout[5])
|
||||
return init_data_args
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import math
|
|||
import numbers
|
||||
import numpy as np
|
||||
|
||||
from mindspore.communication.management import get_rank, get_group_size
|
||||
from mindspore.communication.management import get_group_size
|
||||
from mindspore.common._utils import is_shape_unknown, is_stub_tensor
|
||||
from mindspore.common.seed import get_seed
|
||||
from mindspore import context
|
||||
|
@ -2280,9 +2280,9 @@ class Tensor(Tensor_):
|
|||
self._np_seed = np.random.get_state()[1][0]
|
||||
self.need_set_seed = (slice_index is not None)
|
||||
self._global_seed = global_seed
|
||||
self._device_num = 1
|
||||
self._seed_offset = 1
|
||||
if self.need_set_seed:
|
||||
self._device_num = get_group_size()
|
||||
self._seed_offset = get_group_size() * 2
|
||||
|
||||
def __enter__(self):
|
||||
if self.need_set_seed:
|
||||
|
@ -2293,7 +2293,7 @@ class Tensor(Tensor_):
|
|||
else:
|
||||
np.random.seed(slice_index + Tensor.delta_seed)
|
||||
self.init.seed = slice_index + Tensor.delta_seed
|
||||
Tensor.delta_seed += self._device_num
|
||||
Tensor.delta_seed += self._seed_offset
|
||||
|
||||
def __exit__(self, ptype, value, trace):
|
||||
if self.need_set_seed:
|
||||
|
@ -2302,10 +2302,6 @@ class Tensor(Tensor_):
|
|||
|
||||
with seed_context(self.init):
|
||||
self.init(data)
|
||||
if opt_shard_group:
|
||||
rank = get_rank(opt_shard_group)
|
||||
size = get_group_size(opt_shard_group)
|
||||
data = np.split(data, size)[rank]
|
||||
self.init = None
|
||||
|
||||
# At embedding cache scenes. When size of tensor is out of range, we store data to persistent storage
|
||||
|
|
|
@ -17,8 +17,11 @@ This module is to write data into mindrecord.
|
|||
"""
|
||||
import os
|
||||
import platform
|
||||
import queue
|
||||
import re
|
||||
import stat
|
||||
import time
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
from mindspore import log as logger
|
||||
from .shardwriter import ShardWriter
|
||||
|
@ -26,7 +29,7 @@ from .shardreader import ShardReader
|
|||
from .shardheader import ShardHeader
|
||||
from .shardindexgenerator import ShardIndexGenerator
|
||||
from .shardutils import MIN_SHARD_COUNT, MAX_SHARD_COUNT, VALID_ATTRIBUTES, VALID_ARRAY_ATTRIBUTES, \
|
||||
check_filename, VALUE_TYPE_MAP
|
||||
check_filename, VALUE_TYPE_MAP, SUCCESS
|
||||
from .common.exceptions import ParamValueError, ParamTypeError, MRMInvalidSchemaError, MRMDefineIndexError
|
||||
|
||||
__all__ = ['FileWriter']
|
||||
|
@ -103,6 +106,13 @@ class FileWriter:
|
|||
self._writer = ShardWriter()
|
||||
self._generator = None
|
||||
|
||||
# parallel write mode
|
||||
self._parallel_writer = None
|
||||
self._writers = None
|
||||
self._queue = None
|
||||
self._workers = None
|
||||
self._index_workers = None
|
||||
|
||||
@classmethod
|
||||
def open_for_append(cls, file_name):
|
||||
r"""
|
||||
|
@ -259,6 +269,11 @@ class FileWriter:
|
|||
MRMSetHeaderError: If failed to set header.
|
||||
MRMWriteDatasetError: If failed to write dataset.
|
||||
"""
|
||||
if self._parallel_writer is None:
|
||||
self._parallel_writer = parallel_writer
|
||||
if self._parallel_writer != parallel_writer:
|
||||
raise RuntimeError("The parameter `parallel_writer` must be consistent during use.")
|
||||
if not self._parallel_writer:
|
||||
if not self._writer.is_open:
|
||||
self._writer.open(self._paths, self._overwrite)
|
||||
if not self._writer.get_shard_header():
|
||||
|
@ -267,8 +282,8 @@ class FileWriter:
|
|||
raise ParamTypeError('raw_data', 'list')
|
||||
if self._flush and not self._append:
|
||||
raise RuntimeError("Not allowed to call `write_raw_data` on flushed MindRecord files." \
|
||||
"When creating new Mindrecord files, please remove `commit` before `write_raw_data`." \
|
||||
"In other cases, when appending to existing MindRecord files, " \
|
||||
"When creating new Mindrecord files, please remove `commit` before " \
|
||||
"`write_raw_data`. In other cases, when appending to existing MindRecord files, " \
|
||||
"please call `open_for_append` first and then `write_raw_data`.")
|
||||
for each_raw in raw_data:
|
||||
if not isinstance(each_raw, dict):
|
||||
|
@ -276,6 +291,46 @@ class FileWriter:
|
|||
self._verify_based_on_schema(raw_data)
|
||||
return self._writer.write_raw_data(raw_data, True, parallel_writer)
|
||||
|
||||
## parallel write mode
|
||||
# init the _writers and launch the workers
|
||||
if self._writers is None:
|
||||
self._writers = [None] * len(self._paths) # writers used by worker
|
||||
self._queue = mp.Queue(len(self._paths) * 2) # queue for worker
|
||||
self._workers = [None] * len(self._paths) # worker process
|
||||
for i, path in enumerate(self._paths):
|
||||
self._writers[i] = ShardWriter()
|
||||
self._writers[i].open([path], self._overwrite)
|
||||
self._writers[i].set_shard_header(self._header)
|
||||
|
||||
# launch the workers for parallel write
|
||||
self._queue._joincancelled = True # pylint: disable=W0212
|
||||
p = mp.Process(target=self._write_worker, args=(i, self._queue))
|
||||
p.daemon = True
|
||||
p.start()
|
||||
logger.info("Start worker process(pid:{}) to parallel write.".format(p.pid))
|
||||
self._workers[i] = p
|
||||
|
||||
# fill the self._queue
|
||||
check_interval = 0.5 # 0.5s
|
||||
start_time = time.time()
|
||||
while True:
|
||||
try:
|
||||
self._queue.put(raw_data, block=False)
|
||||
except queue.Full:
|
||||
if time.time() - start_time > check_interval:
|
||||
start_time = time.time()
|
||||
logger.warning("Because there are too few MindRecord file shards, the efficiency of parallel " \
|
||||
"writing is too low. You can stop the current task and add the parameter " \
|
||||
"`shard_num` of `FileWriter` to upgrade the task.")
|
||||
|
||||
# check the status of worker process
|
||||
for i in range(len(self._paths)):
|
||||
if not self._workers[i].is_alive():
|
||||
raise RuntimeError("Worker process(pid:{}) has stopped. Please check " \
|
||||
"the above log".format(self._workers[i].pid))
|
||||
continue
|
||||
return SUCCESS
|
||||
|
||||
def set_header_size(self, header_size):
|
||||
"""
|
||||
Set the size of header which contains shard information, schema information, \
|
||||
|
@ -326,7 +381,7 @@ class FileWriter:
|
|||
"""
|
||||
return self._writer.set_page_size(page_size)
|
||||
|
||||
def commit(self):
|
||||
def commit(self): # pylint: disable=W0212
|
||||
"""
|
||||
Flush data in memory to disk and generate the corresponding database files.
|
||||
|
||||
|
@ -343,13 +398,14 @@ class FileWriter:
|
|||
MRMGenerateIndexError: If failed to write to database.
|
||||
MRMCommitError: If failed to flush data to disk.
|
||||
"""
|
||||
if not self._parallel_writer:
|
||||
self._flush = True
|
||||
if not self._writer.is_open:
|
||||
self._writer.open(self._paths, self._overwrite)
|
||||
# permit commit without data
|
||||
if not self._writer.get_shard_header():
|
||||
self._writer.set_shard_header(self._header)
|
||||
ret = self._writer.commit()
|
||||
self._writer.commit()
|
||||
if self._index_generator:
|
||||
if self._append:
|
||||
self._generator = ShardIndexGenerator(self._file_name, self._append)
|
||||
|
@ -357,10 +413,20 @@ class FileWriter:
|
|||
self._generator = ShardIndexGenerator(os.path.realpath(self._paths[0]), self._append)
|
||||
self._generator.build()
|
||||
self._generator.write_to_db()
|
||||
else:
|
||||
# maybe a empty mindrecord, so need check _writers
|
||||
if self._writers is None:
|
||||
self._writers = [None] * len(self._paths)
|
||||
for i, path in enumerate(self._paths):
|
||||
self._writers[i] = ShardWriter()
|
||||
self._writers[i].open(path, self._overwrite)
|
||||
self._writers[i].set_shard_header(self._header)
|
||||
|
||||
self._parallel_commit()
|
||||
|
||||
# change the file mode to 600
|
||||
mindrecord_files = []
|
||||
index_files = []
|
||||
# change the file mode to 600
|
||||
for item in self._paths:
|
||||
if os.path.exists(item):
|
||||
os.chmod(item, stat.S_IRUSR | stat.S_IWUSR)
|
||||
|
@ -373,7 +439,62 @@ class FileWriter:
|
|||
logger.info("The list of mindrecord files created are: {}, and the list of index files are: {}".format(
|
||||
mindrecord_files, index_files))
|
||||
|
||||
return ret
|
||||
return SUCCESS
|
||||
|
||||
def _index_worker(self, i):
|
||||
"""The worker do the index generator"""
|
||||
generator = ShardIndexGenerator(os.path.realpath(self._paths[i]), False)
|
||||
generator.build()
|
||||
generator.write_to_db()
|
||||
|
||||
def _parallel_commit(self):
|
||||
"""Parallel commit"""
|
||||
# send EOF to worker process
|
||||
for _ in range(len(self._paths)):
|
||||
while True:
|
||||
try:
|
||||
self._queue.put("EOF", block=False)
|
||||
except queue.Full:
|
||||
time.sleep(1)
|
||||
continue
|
||||
break
|
||||
|
||||
# wait the worker processing
|
||||
while True:
|
||||
if not self._queue.empty():
|
||||
logger.info("Waiting for worker process write done.")
|
||||
time.sleep(1)
|
||||
continue
|
||||
break
|
||||
|
||||
del self._queue
|
||||
|
||||
# wait for worker process stop
|
||||
for index in range(len(self._paths)):
|
||||
while True:
|
||||
logger.info("Waiting for the worker process(pid:{}) to process all the data.".format(
|
||||
self._workers[index].pid))
|
||||
if self._workers[index].is_alive():
|
||||
time.sleep(1)
|
||||
continue
|
||||
elif self._workers[index].exitcode != 0:
|
||||
raise RuntimeError("Worker process(pid:{}) has stopped abnormal. Please check " \
|
||||
"the above log".format(self._workers[index].pid))
|
||||
break
|
||||
|
||||
if self._index_generator:
|
||||
# use parallel index workers to generator index
|
||||
self._index_workers = [None] * len(self._paths)
|
||||
for index in range(len(self._paths)):
|
||||
p = mp.Process(target=self._index_worker, args=(index,))
|
||||
p.daemon = True
|
||||
p.start()
|
||||
logger.info("Start worker process(pid:{}) to generate index.".format(p.pid))
|
||||
self._index_workers[index] = p
|
||||
|
||||
# wait the index workers stop
|
||||
for index in range(len(self._paths)):
|
||||
self._index_workers[index].join()
|
||||
|
||||
def _validate_array(self, k, v):
|
||||
"""
|
||||
|
@ -487,3 +608,29 @@ class FileWriter:
|
|||
error = "Field '{}' should be dict.".format(k)
|
||||
return False, error
|
||||
return True, error
|
||||
|
||||
def _write_worker(self, i, in_queue):
|
||||
"""The worker do the data check and write to disk for parallel mode"""
|
||||
while True:
|
||||
# try to get new raw_data from master
|
||||
try:
|
||||
raw_data = in_queue.get()
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
# get EOF from master, worker should commit and stop
|
||||
if raw_data == "EOF":
|
||||
ret = self._writers[i].commit()
|
||||
if ret != SUCCESS:
|
||||
raise RuntimeError("Commit the {}th shard of MindRecord file failed.".format(index))
|
||||
break
|
||||
|
||||
# check the raw_data
|
||||
if not isinstance(raw_data, list):
|
||||
raise ParamTypeError('raw_data', 'list')
|
||||
for each_raw in raw_data:
|
||||
if not isinstance(each_raw, dict):
|
||||
raise ParamTypeError('raw_data item', 'dict')
|
||||
|
||||
self._verify_based_on_schema(raw_data)
|
||||
self._writers[i].write_raw_data(raw_data, True, False)
|
||||
|
|
|
@ -173,7 +173,7 @@ class ShardWriter:
|
|||
for item in data:
|
||||
row_blob = self._merge_blob({field: item[field] for field in self._header.blob_fields})
|
||||
if row_blob:
|
||||
blob_data.append(list(row_blob))
|
||||
blob_data.append(row_blob)
|
||||
# filter raw data according to schema
|
||||
row_raw = {field: self.convert_np_types(item[field])
|
||||
for field in self._header.schema.keys() - self._header.blob_fields if field in item}
|
||||
|
|
|
@ -38,10 +38,12 @@ class ImageNetToMR:
|
|||
|
||||
.. code-block::
|
||||
|
||||
n02119789 0
|
||||
n02100735 1
|
||||
n02110185 2
|
||||
n02096294 3
|
||||
n01440764 0
|
||||
n01443537 1
|
||||
n01484850 2
|
||||
n01491361 3
|
||||
...
|
||||
n15075141 999
|
||||
|
||||
image_dir (str): Image directory contains n02119789, n02100735, n02110185 and n02096294 directory.
|
||||
destination (str): MindRecord file path to transform into, ensure that the directory is created in advance and
|
||||
|
@ -108,11 +110,11 @@ class ImageNetToMR:
|
|||
for _ in range(batch_size):
|
||||
data_list.append(imagenet_iter.__next__())
|
||||
transform_count += 1
|
||||
self.writer.write_raw_data(data_list)
|
||||
self.writer.write_raw_data(data_list, True)
|
||||
logger.info("transformed {} record...".format(transform_count))
|
||||
except StopIteration:
|
||||
if data_list:
|
||||
self.writer.write_raw_data(data_list)
|
||||
self.writer.write_raw_data(data_list, True)
|
||||
logger.info("transformed {} record...".format(transform_count))
|
||||
break
|
||||
|
||||
|
|
|
@ -307,11 +307,11 @@ class TFRecordToMR:
|
|||
data_list.append(tf_iter.__next__())
|
||||
transform_count += 1
|
||||
|
||||
writer.write_raw_data(data_list)
|
||||
writer.write_raw_data(data_list, True)
|
||||
logger.info("Transformed {} records...".format(transform_count))
|
||||
except StopIteration:
|
||||
if data_list:
|
||||
writer.write_raw_data(data_list)
|
||||
writer.write_raw_data(data_list, True)
|
||||
logger.info("Transformed {} records...".format(transform_count))
|
||||
break
|
||||
return writer.commit()
|
||||
|
|
|
@ -198,7 +198,6 @@ def get_bprop_mirror_micro_step_operator(self):
|
|||
assign.add_prim_attr("parameter_micro", 0)
|
||||
out_tensor = Tensor(1.0, mstype.float16)
|
||||
opt_shard = _get_enable_parallel_optimizer()
|
||||
|
||||
def bprop(x, z, out, dout):
|
||||
real_grad = z
|
||||
assign_out = dout
|
||||
|
@ -207,16 +206,16 @@ def get_bprop_mirror_micro_step_operator(self):
|
|||
z = F.depend(z, dout)
|
||||
real_grad = all_reduce(z)
|
||||
real_grad = F.tensor_mul(real_grad, scale)
|
||||
assign(z, real_grad)
|
||||
assign_out = z
|
||||
if opt_shard:
|
||||
return (real_grad, cast(out_tensor, dtype(z)))
|
||||
return F.depend((cast(out_tensor, dtype(x)), cast(out_tensor, dtype(z))), assign(z, real_grad))
|
||||
else:
|
||||
if issubclass_(F.typeof(dout), mstype.tensor):
|
||||
z = F.depend(z, dout)
|
||||
real_grad = all_reduce(z)
|
||||
assign(z, real_grad)
|
||||
assign_out = z
|
||||
if opt_shard:
|
||||
return (real_grad, cast(out_tensor, dtype(z)))
|
||||
return F.depend((cast(out_tensor, dtype(x)), cast(out_tensor, dtype(z))), assign(z, real_grad))
|
||||
return F.depend((cast(out_tensor, dtype(x)), cast(out_tensor, dtype(z))), assign_out)
|
||||
return bprop
|
||||
|
||||
|
@ -314,9 +313,18 @@ def get_bprop_micro_step_all_gather(self):
|
|||
cast = P.Cast()
|
||||
dtype = P.DType()
|
||||
out_tensor = Tensor(1.0, mstype.float16)
|
||||
with_mirror_operator = self.get_attr_dict()["with_mirror_operator"]
|
||||
|
||||
# z: accu_grad
|
||||
def bprop(x, z, out, dout):
|
||||
if with_mirror_operator:
|
||||
if not do_mirror:
|
||||
return (dout, cast(out_tensor, dtype(z)))
|
||||
real_grad = all_reduce(dout)
|
||||
real_grad = split(real_grad)[rank]
|
||||
if mean_flag:
|
||||
real_grad = F.tensor_mul(real_grad, scale)
|
||||
return (real_grad, cast(out_tensor, dtype(z)))
|
||||
z = F.depend(z, dout)
|
||||
if not do_mirror:
|
||||
return (z, cast(out_tensor, dtype(z)))
|
||||
|
|
|
@ -35,3 +35,5 @@ from .acos import _acos_tbe # Accuracy issues(task error in parallel)
|
|||
from .trans_data_ds import _trans_data_ds_tbe # support bool
|
||||
from .scatter_nd_d import _scatter_nd_d_tbe # in python no check supported
|
||||
from .assign_add_ds import _assign_add_ds_tbe # "Frac_nz in pangu not support"
|
||||
from .assign import _assign_tbe # Different formats of assign inputs cause memory to increase
|
||||
from .atomic_addr_clean import _atomic_addr_clean_tbe # need to clean addr larger than 2G, int32 is not enough
|
||||
|
|
|
@ -23,7 +23,7 @@ atomic_addr_clean_op_info = TBERegOp("AtomicAddrClean") \
|
|||
.compute_cost(10) \
|
||||
.kernel_name("atomic_addr_clean") \
|
||||
.partial_flag(True) \
|
||||
.attr("automic_add_mem_size", "required", "listInt", "all") \
|
||||
.attr("automic_add_mem_size", "required", "listInt64", "all") \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
|
|
|
@ -1186,6 +1186,7 @@ class _MirrorMicroStepOperator(PrimitiveWithInfer):
|
|||
self.dev_num = dev_num
|
||||
self.mean_flag = mean_flag
|
||||
self.add_prim_attr('order_enforce_skip', True)
|
||||
self.add_prim_attr('side_effect_backprop_mem', True)
|
||||
|
||||
def infer_shape(self, x_shape, z_shape):
|
||||
return x_shape
|
||||
|
|
|
@ -175,20 +175,26 @@ def _chunk_tensor_by_strategy(np_tensor, strategy):
|
|||
return _chunk_tensor(np_tensor, strategy, len(strategy))
|
||||
|
||||
|
||||
def _get_slice_index(dev_mat, tensor_map):
|
||||
def _get_slice_index(dev_mat, tensor_map, opt_shard_group):
|
||||
"""
|
||||
Get the slice index for current slice.
|
||||
|
||||
Args:
|
||||
dev_mat (list): The device matrix of devices.
|
||||
tensor_map (list): The split strategy of tensor.
|
||||
opt_shard_group(string): The group of optimizer shard
|
||||
|
||||
Returns:
|
||||
Integer, the slice index for slice on this device.
|
||||
"""
|
||||
rank = get_rank()
|
||||
dev_num = get_group_size()
|
||||
tensor_strategy = _get_tensor_strategy(dev_mat, tensor_map)
|
||||
tensor_slice_index = _get_tensor_slice_index(dev_mat, tensor_strategy, tensor_map, rank)
|
||||
if opt_shard_group:
|
||||
tensor_slice_index += dev_num
|
||||
opt_rank = get_rank(opt_shard_group)
|
||||
tensor_slice_index += opt_rank
|
||||
return tensor_slice_index
|
||||
|
||||
|
||||
|
|
|
@ -1,97 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import nn_ops as NN
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, out_channel, kernel_size, pad, stride, dilation):
|
||||
super(Net, self).__init__()
|
||||
self.net = NN.DeformableOffsets(ksize=(kernel_size, kernel_size),
|
||||
pads=(pad, pad, pad, pad),
|
||||
strides=(stride, stride, stride, stride),
|
||||
dilations=(dilation, dilation, dilation, dilation),
|
||||
deformable_groups=1,
|
||||
modulated=True,
|
||||
data_format="NCHW")
|
||||
self.conv = P.Conv2D(out_channel,
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="pad",
|
||||
pad=pad,
|
||||
stride=kernel_size,
|
||||
dilation=1,
|
||||
group=1,
|
||||
data_format="NCHW")
|
||||
|
||||
def construct(self, x, w, offset):
|
||||
x = self.net(x, offset)
|
||||
return self.conv(x, w)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, w, offset, output_grad):
|
||||
return self.grad(self.network)(x, w, offset, output_grad)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_deformable_conv2d_grad():
|
||||
""""
|
||||
Feature: deformable_conv2d_grad function
|
||||
Description: Test case for simplest deformable_conv2d_grad
|
||||
Expectation: The results are as expected
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
kernel_size = 2
|
||||
stride = 1
|
||||
pad = 0
|
||||
dilation = 1
|
||||
# x shape [1, 64, 2, 2]
|
||||
x = Tensor(np.ones([1, 64, 2, 2]).astype(np.float32) * 0.1)
|
||||
# weight shape [1, 64, 2, 2]
|
||||
weight = Tensor(np.ones([1, 64, 2, 2]).astype(np.float32) * 0.1)
|
||||
# offsets shape [1, 12, 1, 1]
|
||||
offsets = Tensor(np.ones([1, 12, 1, 1]).astype(np.float32) * 0.1)
|
||||
# out_channel, kernel_size, pad, stride, dilation
|
||||
dfm_conv2d_net = Net(1, kernel_size, pad, stride, dilation)
|
||||
out = dfm_conv2d_net(x, weight, offsets)
|
||||
grad_net = Grad(dfm_conv2d_net)
|
||||
grad_output = grad_net(x, weight, offsets, out)
|
||||
expect_out = np.array([[[[0.2310471]]]]).astype(np.float32)
|
||||
expect_grad_x = np.array([[[[0.00187125, 0.00207916], [0.00207916, 0.00231018]]] * 64]).astype(np.float32)
|
||||
expect_grad_weight = np.array([[[[0.00231128, 0.00208033], [0.00208033, 0.0018723]]] * 64]).astype((np.float32))
|
||||
expect_grad_offset = np.array([[[0]], [[-0.01478]], [[0]], [[-0.01331]],
|
||||
[[0]], [[0]], [[-0.01478]], [[-0.01331]],
|
||||
[[0.14785]], [[0.13307]], [[0.13307]], [[0.11976]]]).astype((np.float32))
|
||||
assert np.allclose(out.asnumpy(), expect_out, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[0].asnumpy(), expect_grad_x, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[1].asnumpy(), expect_grad_weight, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[2].asnumpy(), expect_grad_offset, 0.0001, 0.0001)
|
|
@ -1,217 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
from mindspore.ops.operations import nn_ops
|
||||
from mindspore.ops import functional as F
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class TestNetwork(nn.Cell):
|
||||
def __init__(self):
|
||||
super(TestNetwork, self).__init__()
|
||||
stride = (1, 1, 1, 1)
|
||||
pad = (0, 0, 0, 0)
|
||||
ksize = (2, 2)
|
||||
self.deformable_offsets_grad_op = G.DeformableOffsetsGrad(stride, pad, ksize)
|
||||
|
||||
def construct(self, dout, x, offsets):
|
||||
output = self.deformable_offsets_grad_op(dout, x, offsets)
|
||||
return output
|
||||
|
||||
|
||||
def test_grad_infer():
|
||||
"""
|
||||
Feature: CPU operation.
|
||||
Description: Test of CPU operation: DeformableOffsetsGrad
|
||||
Expectation: No exception raised.
|
||||
"""
|
||||
dout = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
x = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
offsets = Tensor(np.array([0.1] * 12).astype(np.float32).reshape([1, 12, 1, 1]))
|
||||
|
||||
net = TestNetwork()
|
||||
grad = net(dout, x, offsets)
|
||||
print("grad_x:", grad[0])
|
||||
print("grad_offset:", grad[1])
|
||||
return grad
|
||||
|
||||
|
||||
class ForwardNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ForwardNet, self).__init__()
|
||||
stride = (1, 1, 1, 1)
|
||||
pad = (0, 0, 0, 0)
|
||||
ksize = (2, 2)
|
||||
self.deformable_offsets_grad_op = nn_ops.DeformableOffsets(stride, pad, ksize)
|
||||
|
||||
def construct(self, x, offsets):
|
||||
output = self.deformable_offsets_grad_op(x, offsets)
|
||||
return output
|
||||
|
||||
|
||||
class BackwardNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(BackwardNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
out = self.net(*inputs)
|
||||
return out, grad_all(self.net)(*inputs)
|
||||
|
||||
|
||||
def test_auto_diff():
|
||||
"""
|
||||
Feature: CPU operation.
|
||||
Description: Test of CPU operation: DeformableOffsetsGrad by auto diff.
|
||||
Expectation: No exception raised.
|
||||
"""
|
||||
x = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
offsets = Tensor(np.array([0.1] * 12).astype(np.float32).reshape([1, 12, 1, 1]))
|
||||
forward_net = ForwardNet()
|
||||
net = BackwardNet(forward_net)
|
||||
grad = net(x, offsets)
|
||||
print("grad_x:", grad[0])
|
||||
print("grad_offset:", grad[1])
|
||||
return grad
|
||||
|
||||
|
||||
class NetDeformableOffsetsGrad(nn.Cell):
|
||||
def __init__(self, data_format):
|
||||
super(NetDeformableOffsetsGrad, self).__init__()
|
||||
strides = (1, 1, 1, 1)
|
||||
pads = (0, 0, 0, 0)
|
||||
ksize = (3, 3)
|
||||
self.grad_op = G.DeformableOffsetsGrad(strides, pads, ksize, data_format=data_format)
|
||||
|
||||
def construct(self, grad, input_x, offsets):
|
||||
return self.grad_op(grad, input_x, offsets)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
|
||||
def test_deformable_offsets_grad_nchw(data_type):
|
||||
"""
|
||||
Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: test the rightness of DeformableOffsetsGrad gpu kernel
|
||||
Expectation: the output is same as expected result
|
||||
"""
|
||||
net = NetDeformableOffsetsGrad(data_format="NCHW")
|
||||
dout = Tensor(np.ones([1, 2, 3, 3]).astype(data_type))
|
||||
x = Tensor(np.ones([1, 2, 4, 4]).astype(data_type))
|
||||
offsets = Tensor(np.ones([1, 27, 1, 1]).astype(data_type) * 0.1)
|
||||
output = net(dout, x, offsets)
|
||||
|
||||
expect_grad_x = np.array([[[0.081, 0.09, 0.09, 0.009],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.009, 0.01, 0.01, 0.001]],
|
||||
[[0.081, 0.09, 0.09, 0.009],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.009, 0.01, 0.01, 0.001]]]
|
||||
).astype(data_type)
|
||||
expect_grad_offset = np.array([0] * 18 + [2.0] * 9).astype(data_type).reshape([1, 27, 1, 1])
|
||||
rtol = 1e-5
|
||||
if data_type == np.float16:
|
||||
rtol = 1e-3
|
||||
assert np.allclose(output[0].asnumpy(), expect_grad_x, rtol)
|
||||
assert np.allclose(output[1].asnumpy(), expect_grad_offset, rtol)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
|
||||
def test_deformable_offsets_grad_nhwc(data_type):
|
||||
"""
|
||||
Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: test the rightness of DeformableOffsetsGrad gpu kernel
|
||||
Expectation: the output is same as expected result
|
||||
"""
|
||||
net = NetDeformableOffsetsGrad(data_format="NHWC")
|
||||
dout = Tensor(np.ones([1, 3, 3, 2]).astype(data_type))
|
||||
x = Tensor(np.ones([1, 4, 4, 2]).astype(data_type))
|
||||
offsets = Tensor(np.ones([1, 1, 1, 27]).astype(data_type) * 0.1)
|
||||
output = net(dout, x, offsets)
|
||||
expect_grad_x = np.array([[[0.081, 0.081],
|
||||
[0.09, 0.09],
|
||||
[0.09, 0.09],
|
||||
[0.009, 0.009]],
|
||||
[[0.09, 0.09],
|
||||
[0.1, 0.1],
|
||||
[0.1, 0.1],
|
||||
[0.01, 0.01]],
|
||||
[[0.09, 0.09],
|
||||
[0.1, 0.1],
|
||||
[0.1, 0.1],
|
||||
[0.01, 0.01]],
|
||||
[[0.009, 0.009],
|
||||
[0.01, 0.01],
|
||||
[0.01, 0.01],
|
||||
[0.001, 0.001]]
|
||||
]
|
||||
).astype(data_type)
|
||||
expect_grad_offset = np.array([0] * 18 + [2.0] * 9).astype(data_type).reshape([1, 1, 1, 27])
|
||||
rtol = 1e-5
|
||||
if data_type == np.float16:
|
||||
rtol = 1e-3
|
||||
assert np.allclose(output[0].asnumpy(), expect_grad_x, rtol)
|
||||
assert np.allclose(output[1].asnumpy(), expect_grad_offset, rtol)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_vmap():
|
||||
""""
|
||||
Feature: Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: Test case with vmap.
|
||||
Expectation: The results are as expected.
|
||||
"""
|
||||
|
||||
def cal_deformable_offsets_grad(dout, x, offsets):
|
||||
net = NetDeformableOffsetsGrad(data_format="NCHW")
|
||||
return net(dout, x, offsets)
|
||||
|
||||
dout = Tensor(np.arange(2 * 1 * 2 * 3 * 3).reshape(2, 1, 2, 3, 3), dtype.float32)
|
||||
x = Tensor(np.arange(2 * 1 * 2 * 4 * 4).reshape(2, 1, 2, 4, 4), dtype.float32)
|
||||
offsets = Tensor(np.arange(2 * 1 * 27 * 1 * 1).reshape(2, 1, 27, 1, 1) * 0.1, dtype.float32)
|
||||
|
||||
vmap_deformable_offset_grad = F.vmap(cal_deformable_offsets_grad, in_axes=(0, 0, 0), out_axes=0)
|
||||
out1 = vmap_deformable_offset_grad(dout, x, offsets)
|
||||
|
||||
def manually_batched(dout, x, offsets):
|
||||
output_dx = []
|
||||
output_d_offsets = []
|
||||
for i in range(x.shape[0]):
|
||||
dx, d_offsets = cal_deformable_offsets_grad(dout[i], x[i], offsets[i])
|
||||
output_dx.append(dx)
|
||||
output_d_offsets.append(d_offsets)
|
||||
|
||||
return F.stack(output_dx), F.stack(output_d_offsets)
|
||||
|
||||
out2 = manually_batched(dout, x, offsets)
|
||||
assert np.allclose(out1[0].asnumpy(), out2[0].asnumpy())
|
||||
assert np.allclose(out1[1].asnumpy(), out2[1].asnumpy())
|
|
@ -1,295 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import platform
|
||||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops as ops
|
||||
from mindspore.ops import kernel
|
||||
|
||||
|
||||
@kernel
|
||||
def dtype_and_cast_example(a, b):
|
||||
"""
|
||||
test function for dtype and cast in Hybrid DSL
|
||||
"""
|
||||
d = allocate(a.shape, "float16")
|
||||
c = output_tensor(a.shape, "float16")
|
||||
|
||||
for i0 in range(a.shape[0]):
|
||||
for i1 in range(a.shape[1]):
|
||||
d[i0, i1] = float16(1.0)
|
||||
c[i0, i1] = d[i0, i1] + float16(a[i0, i1])
|
||||
c[i0, i1] = c[i0, i1] * float16(b[i0, i1])
|
||||
return c
|
||||
|
||||
|
||||
@kernel
|
||||
def allocate_and_math_intrin_example(a, b):
|
||||
"""
|
||||
test function for allocate and math function in Hybrid DSL
|
||||
"""
|
||||
d = allocate(a.shape, a.dtype)
|
||||
c = output_tensor(a.shape, a.dtype)
|
||||
|
||||
for i0 in range(a.shape[0]):
|
||||
for i1 in range(b.shape[1]):
|
||||
d[i0, i1] = abs(a[i0, i1])
|
||||
c[i0, i1] = d[i0, i1] + b[i0, i1]
|
||||
return c
|
||||
|
||||
|
||||
@kernel
|
||||
def grid_example(a, b):
|
||||
"""
|
||||
test function for grid in Hybrid DSL
|
||||
"""
|
||||
c = output_tensor(a.shape, a.dtype)
|
||||
|
||||
for arg in grid(a.shape):
|
||||
c[arg] = a[arg] + b[arg[0], arg[1]]
|
||||
return c
|
||||
|
||||
|
||||
class TestMsHybridDSL(Cell):
|
||||
"""Net definition"""
|
||||
|
||||
def __init__(self, func, func_type, out_shape=None, out_dtype=None):
|
||||
super(TestMsHybridDSL, self).__init__()
|
||||
|
||||
self.program = ops.Custom(func, out_shape=out_shape, out_dtype=out_dtype, func_type=func_type)
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.program(x, y)
|
||||
|
||||
|
||||
def ms_kernel_cast_with_infer():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL and infer functions
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
|
||||
test = TestMsHybridDSL(dtype_and_cast_example, "hybrid", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = dtype_and_cast_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_cast_without_infer():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL and without infer functions
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
|
||||
test = TestMsHybridDSL(dtype_and_cast_example, "hybrid")
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = dtype_and_cast_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_cast_pyfunc():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL and func_type pyfunc
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
|
||||
test = TestMsHybridDSL(dtype_and_cast_example, "pyfunc", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = dtype_and_cast_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_allocate():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL about math functions and allocate
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
|
||||
test = TestMsHybridDSL(allocate_and_math_intrin_example, "hybrid", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = allocate_and_math_intrin_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_allocate_cpu():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL about math functions and allocate
|
||||
for cpu, we test fp32 to avoid env diff in support of data types.
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.ones((4, 4)).astype(np.float32)
|
||||
input_y = np.ones((4, 4)).astype(np.float32)
|
||||
|
||||
test = TestMsHybridDSL(allocate_and_math_intrin_example, "hybrid", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = allocate_and_math_intrin_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_grid():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL about grid
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float16)
|
||||
|
||||
test = TestMsHybridDSL(grid_example, "hybrid", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = grid_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
def ms_kernel_grid_cpu():
|
||||
"""
|
||||
test case Custom Op with functions written in Hybrid DSL about grid
|
||||
"""
|
||||
np.random.seed(10)
|
||||
input_x = np.random.normal(0, 1, [4, 4]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [4, 4]).astype(np.float32)
|
||||
|
||||
test = TestMsHybridDSL(grid_example, "hybrid", lambda x, _: x, lambda x, _: x)
|
||||
output = test(Tensor(input_x), Tensor(input_y))
|
||||
expect = grid_example(input_x, input_y)
|
||||
compare_res = np.allclose(expect, output.asnumpy(), 0.001, 0.001)
|
||||
if not compare_res:
|
||||
raise ValueError("Precision error, compare result: {}".format(compare_res))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_ascend_graph_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: ascend test case, Python DSL with kernel decorator in GRAPH_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
ms_kernel_cast_pyfunc()
|
||||
ms_kernel_cast_with_infer()
|
||||
ms_kernel_cast_without_infer()
|
||||
ms_kernel_allocate()
|
||||
ms_kernel_grid()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_ascend_pynative_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: ascend test case, Python DSL with kernel decorator in PYNATIVE_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
ms_kernel_cast_pyfunc()
|
||||
ms_kernel_cast_with_infer()
|
||||
ms_kernel_cast_without_infer()
|
||||
ms_kernel_allocate()
|
||||
ms_kernel_grid()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_gpu_graph_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: gpu test case, Python DSL with kernel decorator in GRAPH_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms_kernel_cast_pyfunc()
|
||||
ms_kernel_cast_with_infer()
|
||||
ms_kernel_cast_without_infer()
|
||||
ms_kernel_allocate()
|
||||
ms_kernel_grid()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_gpu_pynative_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: gpu test case, Python DSL with kernel decorator in PYNATIVE_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
ms_kernel_cast_pyfunc()
|
||||
ms_kernel_cast_with_infer()
|
||||
ms_kernel_cast_without_infer()
|
||||
ms_kernel_allocate()
|
||||
ms_kernel_grid()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_cpu_graph_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: cpu test case, Python DSL with kernel decorator in GRAPH_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
if platform.system().lower() in {"windows", "darwin"}:
|
||||
# skip window and mac, same for pynative below
|
||||
pass
|
||||
else:
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
ms_kernel_allocate_cpu()
|
||||
ms_kernel_grid_cpu()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_ms_kernel_cpu_pynative_mode():
|
||||
"""
|
||||
Feature: test case for Custom op with func_type="kernel"
|
||||
Description: cpu test case, Python DSL with kernel decorator in PYNATIVE_MODE.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
if platform.system().lower() in {"windows", "darwin"}:
|
||||
pass
|
||||
else:
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
|
||||
ms_kernel_allocate_cpu()
|
||||
ms_kernel_grid_cpu()
|
|
@ -67,7 +67,10 @@ def test_imagenet_to_mindrecord(fixture_file):
|
|||
for i in range(PARTITION_NUMBER):
|
||||
assert os.path.exists(file_name + str(i))
|
||||
assert os.path.exists(file_name + str(i) + ".db")
|
||||
read(file_name + "0")
|
||||
read([file_name + "0",
|
||||
file_name + "1",
|
||||
file_name + "2",
|
||||
file_name + "3"])
|
||||
|
||||
def test_imagenet_to_mindrecord_default_partition_number(fixture_file):
|
||||
"""
|
||||
|
@ -76,7 +79,7 @@ def test_imagenet_to_mindrecord_default_partition_number(fixture_file):
|
|||
"""
|
||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||
imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR,
|
||||
file_name)
|
||||
file_name, 1)
|
||||
imagenet_transformer.transform()
|
||||
assert os.path.exists(file_name)
|
||||
assert os.path.exists(file_name + ".db")
|
||||
|
|
|
@ -1270,3 +1270,106 @@ def test_cv_file_overwrite_exception_02():
|
|||
writer.write_raw_data(data)
|
||||
assert 'Invalid file, mindrecord files already exist. Please check file path:' in str(err.value)
|
||||
remove_multi_files(mindrecord_file_name, FILES_NUM)
|
||||
|
||||
|
||||
def test_file_writer_parallel(file_name=None, remove_file=True):
|
||||
"""
|
||||
Feature: FileWriter
|
||||
Description: parallel for writer
|
||||
Expectation: generated mindrecord file
|
||||
"""
|
||||
if not file_name:
|
||||
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
|
||||
|
||||
# single file
|
||||
remove_one_file(file_name)
|
||||
remove_one_file(file_name + ".db")
|
||||
writer = FileWriter(file_name)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
for _ in range(5):
|
||||
writer.write_raw_data(data, True)
|
||||
writer.commit()
|
||||
if remove_file:
|
||||
remove_one_file(file_name)
|
||||
remove_one_file(file_name + ".db")
|
||||
|
||||
# write_raw_data with empty
|
||||
remove_one_file(file_name)
|
||||
remove_one_file(file_name + ".db")
|
||||
writer = FileWriter(file_name)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
with pytest.raises(RuntimeError):
|
||||
writer.write_raw_data([])
|
||||
|
||||
# multi files
|
||||
# len(data) > FILES_NUM which is parallel size
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
writer = FileWriter(file_name, FILES_NUM)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
for _ in range(10):
|
||||
writer.write_raw_data(data, True)
|
||||
writer.commit()
|
||||
if remove_file:
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
|
||||
# len(data) < FILES_NUM which is parallel size
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
writer = FileWriter(file_name, FILES_NUM)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
for _ in range(2):
|
||||
writer.write_raw_data(data[0:2], True)
|
||||
writer.commit()
|
||||
if remove_file:
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
|
||||
# write_raw_data(.., True) and write_raw_data(.., False)
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
writer = FileWriter(file_name, FILES_NUM)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
with pytest.raises(RuntimeError):
|
||||
writer.write_raw_data(data[0:2], True)
|
||||
writer.write_raw_data(data[0:2])
|
||||
|
||||
# without write_raw_data
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
writer = FileWriter(file_name, FILES_NUM)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
writer.commit()
|
||||
if remove_file:
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
|
||||
# write_raw_data with empty
|
||||
remove_multi_files(file_name, FILES_NUM)
|
||||
writer = FileWriter(file_name, FILES_NUM)
|
||||
data = get_data("../data/mindrecord/testImageNetData/")
|
||||
cv_schema_json = {"file_name": {"type": "string"},
|
||||
"label": {"type": "int64"}, "data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
with pytest.raises(RuntimeError):
|
||||
writer.write_raw_data([], True)
|
||||
writer.commit()
|
||||
|
|
|
@ -0,0 +1,133 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore import context, Model
|
||||
from mindspore.common.api import _cell_graph_executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.wrap.cell_wrapper import PipelineCell
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
from parallel.utils.utils import ParallelValidator
|
||||
from .test_pipeline_split import DatasetLenet
|
||||
|
||||
|
||||
def setup_function():
|
||||
context.set_auto_parallel_context(dataset_strategy="full_batch")
|
||||
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
predict = self.network(x, y)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def test_opt_parallel_without_grad():
|
||||
"""
|
||||
Feature: Test optimizer parallel with parameter's requires_grad=False.
|
||||
Description: Need insert AllGather.
|
||||
Expectation: Successful graph compilation.
|
||||
"""
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.fc1 = P.MatMul().shard(((4, 1), (1, 2)))
|
||||
self.fc2 = P.MatMul().shard(((2, 2), (2, 1)))
|
||||
self.p1 = Parameter(Tensor(np.ones([1024, 1024]).astype(np.float32)), name="weight1", requires_grad=False)
|
||||
self.p2 = Parameter(Tensor(np.ones([1024, 64]).astype(np.float32)), name="weight2")
|
||||
|
||||
def construct(self, x, y):
|
||||
x = self.fc1(x, self.p1)
|
||||
x = self.fc2(x, self.p2)
|
||||
return x - y
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, enable_parallel_optimizer=True)
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 1024]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
phase, _ = _cell_graph_executor.compile(net, x, y)
|
||||
validator = ParallelValidator(net, phase)
|
||||
expect_layout = ([4, 2], [-1, 0], [1024, 512], 0, True, '4-5226697808808137312')
|
||||
assert validator.check_parameter_layout("network.network.p1", expect_layout)
|
||||
|
||||
|
||||
def test_opt_parallel_without_grad_pipeline():
|
||||
"""
|
||||
Feature: Test optimizer parallel + pipeline with parameter's requires_grad=False.
|
||||
Description: Need insert AllGather.
|
||||
Expectation: Successful graph compilation.
|
||||
"""
|
||||
class MatMulNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.fc1 = P.MatMul().shard(((4, 1), (1, 2)))
|
||||
self.fc2 = P.MatMul().shard(((2, 2), (2, 1)))
|
||||
self.p1 = Parameter(Tensor(np.ones([1024, 1024]).astype(np.float32)), name="weight1", requires_grad=False)
|
||||
self.p2 = Parameter(Tensor(np.ones([1024, 1024]).astype(np.float32)), name="weight2")
|
||||
|
||||
def construct(self, x):
|
||||
x = self.fc1(x, self.p1)
|
||||
x = self.fc2(x, self.p2)
|
||||
return x
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.block = nn.CellList()
|
||||
for i in range(2):
|
||||
cell = MatMulNet()
|
||||
cell.pipeline_stage = i
|
||||
self.block.append(cell)
|
||||
|
||||
def construct(self, x, y):
|
||||
for i in range(2):
|
||||
x = self.block[i](x)
|
||||
return x
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=16, global_rank=0, enable_parallel_optimizer=True)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", pipeline_stages=2)
|
||||
net = PipelineCell(Net(), 4)
|
||||
x = Tensor(np.ones([128, 1024]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
||||
dataset = DatasetLenet(x, y, 3)
|
||||
optimizer = nn.Lamb(net.trainable_params(), learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
assert net.network.block[0].p1.shape == (256, 512)
|
Loading…
Reference in New Issue