Adjust onnx exporting related testcases

This commit is contained in:
fary86 2020-05-15 03:21:29 +08:00
parent 4bb46606db
commit fe2ee14340
3 changed files with 211 additions and 164 deletions

View File

View File

@ -0,0 +1,210 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ut for model serialize(save/load)"""
import os
import stat
import time
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.nn as nn
from mindspore import context
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.train.serialization import export
context.set_context(mode=context.GRAPH_MODE)
def is_enable_onnxruntime():
val = os.getenv("ENABLE_ONNXRUNTIME", "False")
if val in ('ON', 'on', 'TRUE', 'True', 'true'):
return True
return False
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime")
def setup_module():
pass
def teardown_module():
cur_dir = os.path.dirname(os.path.realpath(__file__))
for filename in os.listdir(cur_dir):
if filename.find('ms_output_') == 0 and filename.find('.pb') > 0:
# delete temp files generated by run ut
os.chmod(filename, stat.S_IWRITE)
os.remove(filename)
class BatchNormTester(nn.Cell):
"used to test exporting network in training mode in onnx format"
def __init__(self, num_features):
super(BatchNormTester, self).__init__()
self.bn = nn.BatchNorm2d(num_features)
def construct(self, x):
return self.bn(x)
def test_batchnorm_train_onnx_export():
"test onnx export interface does not modify trainable flag of a network"
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
net = BatchNormTester(3)
net.set_train()
if not net.training:
raise ValueError('netowrk is not in training mode')
onnx_file = 'batch_norm.onnx'
export(net, input, file_name=onnx_file, file_format='ONNX')
if not net.training:
raise ValueError('netowrk is not in training mode')
# check existence of exported onnx file and delete it
assert os.path.exists(onnx_file)
os.chmod(onnx_file, stat.S_IWRITE)
os.remove(onnx_file)
class LeNet5(nn.Cell):
"""LeNet5 definition"""
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = P.Flatten()
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
class DefinedNet(nn.Cell):
"""simple Net definition with maxpoolwithargmax."""
def __init__(self, num_classes=10):
super(DefinedNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2)
self.flatten = nn.Flatten()
self.fc = nn.Dense(int(56 * 56 * 64), num_classes)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x, argmax = self.maxpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
class DepthwiseConv2dAndReLU6(nn.Cell):
"Net for testing DepthwiseConv2d and ReLU6"
def __init__(self, input_channel, kernel_size):
super(DepthwiseConv2dAndReLU6, self).__init__()
weight_shape = [1, input_channel, kernel_size, kernel_size]
from mindspore.common.initializer import initializer
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size))
self.relu6 = nn.ReLU6()
def construct(self, x):
x = self.depthwise_conv(x, self.weight)
x = self.relu6(x)
return x
# generate mindspore Tensor by shape and numpy datatype
def gen_tensor(shape, dtype=np.float32):
return Tensor(np.ones(shape).astype(dtype))
# ut configs in triple: (ut_name, network, network-input)
net_cfgs = [
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])),
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])),
('depthwiseconv_relu6', DepthwiseConv2dAndReLU6(3, kernel_size=3), gen_tensor([1, 3, 32, 32])),
]
def get_id(cfg):
return list(map(lambda x: x[0], net_cfgs))
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
def test_onnx_export(name, net, inp):
onnx_file = name + ".onnx"
export(net, inp, file_name=onnx_file, file_format='ONNX')
# check existence of exported onnx file and delete it
assert os.path.exists(onnx_file)
os.chmod(onnx_file, stat.S_IWRITE)
os.remove(onnx_file)
@run_on_onnxruntime
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
def test_onnx_export_load_run(name, net, inp):
onnx_file = name + ".onnx"
export(net, inp, file_name=onnx_file, file_format='ONNX')
import onnx
import onnxruntime as ort
print('--------------------- onnx load ---------------------')
# Load the ONNX model
model = onnx.load(onnx_file)
# Check that the IR is well formed
onnx.checker.check_model(model)
# Print a human readable representation of the graph
g = onnx.helper.printable_graph(model.graph)
print(g)
print('------------------ onnxruntime run ------------------')
ort_session = ort.InferenceSession(onnx_file)
input_map = {'x': inp.asnumpy()}
# provide only input x to run model
outputs = ort_session.run(None, input_map)
print(outputs[0])
# overwrite default weight to run model
for item in net.trainable_params():
default_value = item.default_input.asnumpy()
input_map[item.name] = np.ones(default_value.shape, dtype=default_value.dtype)
outputs = ort_session.run(None, input_map)
print(outputs[0])
# check existence of exported onnx file and delete it
assert os.path.exists(onnx_file)
os.chmod(onnx_file, stat.S_IWRITE)
os.remove(onnx_file)

View File

@ -315,171 +315,8 @@ def test_export():
export(net, input_data, file_name="./me_export.pb", file_format="GEIR")
class BatchNormTester(nn.Cell):
"used to test exporting network in training mode in onnx format"
def __init__(self, num_features):
super(BatchNormTester, self).__init__()
self.bn = nn.BatchNorm2d(num_features)
def construct(self, x):
return self.bn(x)
class DepthwiseConv2dAndReLU6(nn.Cell):
"Net for testing DepthwiseConv2d and ReLU6"
def __init__(self, input_channel, kernel_size):
super(DepthwiseConv2dAndReLU6, self).__init__()
weight_shape = [1, input_channel, kernel_size, kernel_size]
from mindspore.common.initializer import initializer
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size))
self.relu6 = nn.ReLU6()
def construct(self, x):
x = self.depthwise_conv(x, self.weight)
x = self.relu6(x)
return x
def test_batchnorm_train_onnx_export():
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
net = BatchNormTester(3)
net.set_train()
if not net.training:
raise ValueError('netowrk is not in training mode')
export(net, input, file_name='batch_norm.onnx', file_format='ONNX')
if not net.training:
raise ValueError('netowrk is not in training mode')
class LeNet5(nn.Cell):
"""LeNet5 definition"""
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = P.Flatten()
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def test_lenet5_onnx_export():
input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
net = LeNet5()
export(net, input, file_name='lenet5.onnx', file_format='ONNX')
class DefinedNet(nn.Cell):
"""simple Net definition with maxpoolwithargmax."""
def __init__(self, num_classes=10):
super(DefinedNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2)
self.flatten = nn.Flatten()
self.fc = nn.Dense(int(56 * 56 * 64), num_classes)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x, argmax = self.maxpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def test_net_onnx_maxpoolwithargmax_export():
input = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
net = DefinedNet()
export(net, input, file_name='definedNet.onnx', file_format='ONNX')
@run_on_onnxruntime
def test_lenet5_onnx_load_run():
onnx_file = 'lenet5.onnx'
input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
net = LeNet5()
export(net, input, file_name=onnx_file, file_format='ONNX')
import onnx
import onnxruntime as ort
print('--------------------- onnx load ---------------------')
# Load the ONNX model
model = onnx.load(onnx_file)
# Check that the IR is well formed
onnx.checker.check_model(model)
# Print a human readable representation of the graph
g = onnx.helper.printable_graph(model.graph)
print(g)
print('------------------ onnxruntime run ------------------')
ort_session = ort.InferenceSession(onnx_file)
input_map = {'x': input.asnumpy()}
# provide only input x to run model
outputs = ort_session.run(None, input_map)
print(outputs[0])
# overwrite default weight to run model
for item in net.trainable_params():
input_map[item.name] = np.ones(item.default_input.asnumpy().shape, dtype=np.float32)
outputs = ort_session.run(None, input_map)
print(outputs[0])
@run_on_onnxruntime
def test_depthwiseconv_relu6_onnx_load_run():
onnx_file = 'depthwiseconv_relu6.onnx'
input_channel = 3
input = Tensor(np.ones([1, input_channel, 32, 32]).astype(np.float32) * 0.01)
net = DepthwiseConv2dAndReLU6(input_channel, kernel_size=3)
export(net, input, file_name=onnx_file, file_format='ONNX')
import onnx
import onnxruntime as ort
print('--------------------- onnx load ---------------------')
# Load the ONNX model
model = onnx.load(onnx_file)
# Check that the IR is well formed
onnx.checker.check_model(model)
# Print a human readable representation of the graph
g = onnx.helper.printable_graph(model.graph)
print(g)
print('------------------ onnxruntime run ------------------')
ort_session = ort.InferenceSession(onnx_file)
input_map = {'x': input.asnumpy()}
# provide only input x to run model
outputs = ort_session.run(None, input_map)
print(outputs[0])
# overwrite default weight to run model
for item in net.trainable_params():
input_map[item.name] = np.ones(item.default_input.asnumpy().shape, dtype=np.float32)
outputs = ort_session.run(None, input_map)
print(outputs[0])
def teardown_module():
files = ['parameters.ckpt', 'new_ckpt.ckpt', 'lenet5.onnx', 'batch_norm.onnx', 'empty.ckpt']
files = ['parameters.ckpt', 'new_ckpt.ckpt', 'empty.ckpt']
for item in files:
file_name = './' + item
if not os.path.exists(file_name):