forked from mindspore-Ecosystem/mindspore
Adjust onnx exporting related testcases
This commit is contained in:
parent
4bb46606db
commit
fe2ee14340
|
@ -0,0 +1,210 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ut for model serialize(save/load)"""
|
||||
import os
|
||||
import stat
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.serialization import export
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
def is_enable_onnxruntime():
|
||||
val = os.getenv("ENABLE_ONNXRUNTIME", "False")
|
||||
if val in ('ON', 'on', 'TRUE', 'True', 'true'):
|
||||
return True
|
||||
return False
|
||||
|
||||
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime")
|
||||
|
||||
|
||||
def setup_module():
|
||||
pass
|
||||
|
||||
|
||||
def teardown_module():
|
||||
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
for filename in os.listdir(cur_dir):
|
||||
if filename.find('ms_output_') == 0 and filename.find('.pb') > 0:
|
||||
# delete temp files generated by run ut
|
||||
os.chmod(filename, stat.S_IWRITE)
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
class BatchNormTester(nn.Cell):
|
||||
"used to test exporting network in training mode in onnx format"
|
||||
|
||||
def __init__(self, num_features):
|
||||
super(BatchNormTester, self).__init__()
|
||||
self.bn = nn.BatchNorm2d(num_features)
|
||||
|
||||
def construct(self, x):
|
||||
return self.bn(x)
|
||||
|
||||
|
||||
def test_batchnorm_train_onnx_export():
|
||||
"test onnx export interface does not modify trainable flag of a network"
|
||||
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = BatchNormTester(3)
|
||||
net.set_train()
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
onnx_file = 'batch_norm.onnx'
|
||||
export(net, input, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
# check existence of exported onnx file and delete it
|
||||
assert os.path.exists(onnx_file)
|
||||
os.chmod(onnx_file, stat.S_IWRITE)
|
||||
os.remove(onnx_file)
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""LeNet5 definition"""
|
||||
|
||||
def __init__(self):
|
||||
super(LeNet5, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
|
||||
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
||||
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Dense(120, 84)
|
||||
self.fc3 = nn.Dense(84, 10)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.max_pool2d(self.relu(self.conv1(x)))
|
||||
x = self.max_pool2d(self.relu(self.conv2(x)))
|
||||
x = self.flatten(x)
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
class DefinedNet(nn.Cell):
|
||||
"""simple Net definition with maxpoolwithargmax."""
|
||||
|
||||
def __init__(self, num_classes=10):
|
||||
super(DefinedNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU()
|
||||
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc = nn.Dense(int(56 * 56 * 64), num_classes)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x, argmax = self.maxpool(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
class DepthwiseConv2dAndReLU6(nn.Cell):
|
||||
"Net for testing DepthwiseConv2d and ReLU6"
|
||||
|
||||
def __init__(self, input_channel, kernel_size):
|
||||
super(DepthwiseConv2dAndReLU6, self).__init__()
|
||||
weight_shape = [1, input_channel, kernel_size, kernel_size]
|
||||
from mindspore.common.initializer import initializer
|
||||
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
||||
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size))
|
||||
self.relu6 = nn.ReLU6()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.depthwise_conv(x, self.weight)
|
||||
x = self.relu6(x)
|
||||
return x
|
||||
|
||||
|
||||
# generate mindspore Tensor by shape and numpy datatype
|
||||
def gen_tensor(shape, dtype=np.float32):
|
||||
return Tensor(np.ones(shape).astype(dtype))
|
||||
|
||||
|
||||
# ut configs in triple: (ut_name, network, network-input)
|
||||
net_cfgs = [
|
||||
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])),
|
||||
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])),
|
||||
('depthwiseconv_relu6', DepthwiseConv2dAndReLU6(3, kernel_size=3), gen_tensor([1, 3, 32, 32])),
|
||||
]
|
||||
|
||||
|
||||
def get_id(cfg):
|
||||
return list(map(lambda x: x[0], net_cfgs))
|
||||
|
||||
|
||||
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
|
||||
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
||||
def test_onnx_export(name, net, inp):
|
||||
onnx_file = name + ".onnx"
|
||||
export(net, inp, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
# check existence of exported onnx file and delete it
|
||||
assert os.path.exists(onnx_file)
|
||||
os.chmod(onnx_file, stat.S_IWRITE)
|
||||
os.remove(onnx_file)
|
||||
|
||||
|
||||
@run_on_onnxruntime
|
||||
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
||||
def test_onnx_export_load_run(name, net, inp):
|
||||
onnx_file = name + ".onnx"
|
||||
export(net, inp, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
|
||||
print('--------------------- onnx load ---------------------')
|
||||
# Load the ONNX model
|
||||
model = onnx.load(onnx_file)
|
||||
# Check that the IR is well formed
|
||||
onnx.checker.check_model(model)
|
||||
# Print a human readable representation of the graph
|
||||
g = onnx.helper.printable_graph(model.graph)
|
||||
print(g)
|
||||
|
||||
print('------------------ onnxruntime run ------------------')
|
||||
ort_session = ort.InferenceSession(onnx_file)
|
||||
input_map = {'x': inp.asnumpy()}
|
||||
# provide only input x to run model
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
# overwrite default weight to run model
|
||||
for item in net.trainable_params():
|
||||
default_value = item.default_input.asnumpy()
|
||||
input_map[item.name] = np.ones(default_value.shape, dtype=default_value.dtype)
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
|
||||
# check existence of exported onnx file and delete it
|
||||
assert os.path.exists(onnx_file)
|
||||
os.chmod(onnx_file, stat.S_IWRITE)
|
||||
os.remove(onnx_file)
|
||||
|
|
@ -315,171 +315,8 @@ def test_export():
|
|||
export(net, input_data, file_name="./me_export.pb", file_format="GEIR")
|
||||
|
||||
|
||||
class BatchNormTester(nn.Cell):
|
||||
"used to test exporting network in training mode in onnx format"
|
||||
|
||||
def __init__(self, num_features):
|
||||
super(BatchNormTester, self).__init__()
|
||||
self.bn = nn.BatchNorm2d(num_features)
|
||||
|
||||
def construct(self, x):
|
||||
return self.bn(x)
|
||||
|
||||
|
||||
class DepthwiseConv2dAndReLU6(nn.Cell):
|
||||
"Net for testing DepthwiseConv2d and ReLU6"
|
||||
|
||||
def __init__(self, input_channel, kernel_size):
|
||||
super(DepthwiseConv2dAndReLU6, self).__init__()
|
||||
weight_shape = [1, input_channel, kernel_size, kernel_size]
|
||||
from mindspore.common.initializer import initializer
|
||||
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
||||
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size))
|
||||
self.relu6 = nn.ReLU6()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.depthwise_conv(x, self.weight)
|
||||
x = self.relu6(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_batchnorm_train_onnx_export():
|
||||
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = BatchNormTester(3)
|
||||
net.set_train()
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
export(net, input, file_name='batch_norm.onnx', file_format='ONNX')
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""LeNet5 definition"""
|
||||
|
||||
def __init__(self):
|
||||
super(LeNet5, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
|
||||
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
||||
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Dense(120, 84)
|
||||
self.fc3 = nn.Dense(84, 10)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.max_pool2d(self.relu(self.conv1(x)))
|
||||
x = self.max_pool2d(self.relu(self.conv2(x)))
|
||||
x = self.flatten(x)
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_lenet5_onnx_export():
|
||||
input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = LeNet5()
|
||||
export(net, input, file_name='lenet5.onnx', file_format='ONNX')
|
||||
|
||||
|
||||
class DefinedNet(nn.Cell):
|
||||
"""simple Net definition with maxpoolwithargmax."""
|
||||
|
||||
def __init__(self, num_classes=10):
|
||||
super(DefinedNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU()
|
||||
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=2, strides=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc = nn.Dense(int(56 * 56 * 64), num_classes)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x, argmax = self.maxpool(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_net_onnx_maxpoolwithargmax_export():
|
||||
input = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
|
||||
net = DefinedNet()
|
||||
export(net, input, file_name='definedNet.onnx', file_format='ONNX')
|
||||
|
||||
|
||||
@run_on_onnxruntime
|
||||
def test_lenet5_onnx_load_run():
|
||||
onnx_file = 'lenet5.onnx'
|
||||
|
||||
input = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = LeNet5()
|
||||
export(net, input, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
|
||||
print('--------------------- onnx load ---------------------')
|
||||
# Load the ONNX model
|
||||
model = onnx.load(onnx_file)
|
||||
# Check that the IR is well formed
|
||||
onnx.checker.check_model(model)
|
||||
# Print a human readable representation of the graph
|
||||
g = onnx.helper.printable_graph(model.graph)
|
||||
print(g)
|
||||
|
||||
print('------------------ onnxruntime run ------------------')
|
||||
ort_session = ort.InferenceSession(onnx_file)
|
||||
input_map = {'x': input.asnumpy()}
|
||||
# provide only input x to run model
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
# overwrite default weight to run model
|
||||
for item in net.trainable_params():
|
||||
input_map[item.name] = np.ones(item.default_input.asnumpy().shape, dtype=np.float32)
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
|
||||
|
||||
@run_on_onnxruntime
|
||||
def test_depthwiseconv_relu6_onnx_load_run():
|
||||
onnx_file = 'depthwiseconv_relu6.onnx'
|
||||
input_channel = 3
|
||||
input = Tensor(np.ones([1, input_channel, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = DepthwiseConv2dAndReLU6(input_channel, kernel_size=3)
|
||||
export(net, input, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
|
||||
print('--------------------- onnx load ---------------------')
|
||||
# Load the ONNX model
|
||||
model = onnx.load(onnx_file)
|
||||
# Check that the IR is well formed
|
||||
onnx.checker.check_model(model)
|
||||
# Print a human readable representation of the graph
|
||||
g = onnx.helper.printable_graph(model.graph)
|
||||
print(g)
|
||||
|
||||
print('------------------ onnxruntime run ------------------')
|
||||
ort_session = ort.InferenceSession(onnx_file)
|
||||
input_map = {'x': input.asnumpy()}
|
||||
# provide only input x to run model
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
# overwrite default weight to run model
|
||||
for item in net.trainable_params():
|
||||
input_map[item.name] = np.ones(item.default_input.asnumpy().shape, dtype=np.float32)
|
||||
outputs = ort_session.run(None, input_map)
|
||||
print(outputs[0])
|
||||
|
||||
|
||||
def teardown_module():
|
||||
files = ['parameters.ckpt', 'new_ckpt.ckpt', 'lenet5.onnx', 'batch_norm.onnx', 'empty.ckpt']
|
||||
files = ['parameters.ckpt', 'new_ckpt.ckpt', 'empty.ckpt']
|
||||
for item in files:
|
||||
file_name = './' + item
|
||||
if not os.path.exists(file_name):
|
||||
|
|
Loading…
Reference in New Issue