forked from mindspore-Ecosystem/mindspore
!49791 remove the deformable_offsets
Merge pull request !49791 from huangxinjing/code_docs_remove_deformable
This commit is contained in:
commit
fc7346ffad
|
@ -1,97 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import nn_ops as NN
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, out_channel, kernel_size, pad, stride, dilation):
|
||||
super(Net, self).__init__()
|
||||
self.net = NN.DeformableOffsets(ksize=(kernel_size, kernel_size),
|
||||
pads=(pad, pad, pad, pad),
|
||||
strides=(stride, stride, stride, stride),
|
||||
dilations=(dilation, dilation, dilation, dilation),
|
||||
deformable_groups=1,
|
||||
modulated=True,
|
||||
data_format="NCHW")
|
||||
self.conv = P.Conv2D(out_channel,
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="pad",
|
||||
pad=pad,
|
||||
stride=kernel_size,
|
||||
dilation=1,
|
||||
group=1,
|
||||
data_format="NCHW")
|
||||
|
||||
def construct(self, x, w, offset):
|
||||
x = self.net(x, offset)
|
||||
return self.conv(x, w)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, w, offset, output_grad):
|
||||
return self.grad(self.network)(x, w, offset, output_grad)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_deformable_conv2d_grad():
|
||||
""""
|
||||
Feature: deformable_conv2d_grad function
|
||||
Description: Test case for simplest deformable_conv2d_grad
|
||||
Expectation: The results are as expected
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
kernel_size = 2
|
||||
stride = 1
|
||||
pad = 0
|
||||
dilation = 1
|
||||
# x shape [1, 64, 2, 2]
|
||||
x = Tensor(np.ones([1, 64, 2, 2]).astype(np.float32) * 0.1)
|
||||
# weight shape [1, 64, 2, 2]
|
||||
weight = Tensor(np.ones([1, 64, 2, 2]).astype(np.float32) * 0.1)
|
||||
# offsets shape [1, 12, 1, 1]
|
||||
offsets = Tensor(np.ones([1, 12, 1, 1]).astype(np.float32) * 0.1)
|
||||
# out_channel, kernel_size, pad, stride, dilation
|
||||
dfm_conv2d_net = Net(1, kernel_size, pad, stride, dilation)
|
||||
out = dfm_conv2d_net(x, weight, offsets)
|
||||
grad_net = Grad(dfm_conv2d_net)
|
||||
grad_output = grad_net(x, weight, offsets, out)
|
||||
expect_out = np.array([[[[0.2310471]]]]).astype(np.float32)
|
||||
expect_grad_x = np.array([[[[0.00187125, 0.00207916], [0.00207916, 0.00231018]]] * 64]).astype(np.float32)
|
||||
expect_grad_weight = np.array([[[[0.00231128, 0.00208033], [0.00208033, 0.0018723]]] * 64]).astype((np.float32))
|
||||
expect_grad_offset = np.array([[[0]], [[-0.01478]], [[0]], [[-0.01331]],
|
||||
[[0]], [[0]], [[-0.01478]], [[-0.01331]],
|
||||
[[0.14785]], [[0.13307]], [[0.13307]], [[0.11976]]]).astype((np.float32))
|
||||
assert np.allclose(out.asnumpy(), expect_out, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[0].asnumpy(), expect_grad_x, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[1].asnumpy(), expect_grad_weight, 0.0001, 0.0001)
|
||||
assert np.allclose(grad_output[2].asnumpy(), expect_grad_offset, 0.0001, 0.0001)
|
|
@ -1,217 +0,0 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
from mindspore.ops.operations import nn_ops
|
||||
from mindspore.ops import functional as F
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class TestNetwork(nn.Cell):
|
||||
def __init__(self):
|
||||
super(TestNetwork, self).__init__()
|
||||
stride = (1, 1, 1, 1)
|
||||
pad = (0, 0, 0, 0)
|
||||
ksize = (2, 2)
|
||||
self.deformable_offsets_grad_op = G.DeformableOffsetsGrad(stride, pad, ksize)
|
||||
|
||||
def construct(self, dout, x, offsets):
|
||||
output = self.deformable_offsets_grad_op(dout, x, offsets)
|
||||
return output
|
||||
|
||||
|
||||
def test_grad_infer():
|
||||
"""
|
||||
Feature: CPU operation.
|
||||
Description: Test of CPU operation: DeformableOffsetsGrad
|
||||
Expectation: No exception raised.
|
||||
"""
|
||||
dout = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
x = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
offsets = Tensor(np.array([0.1] * 12).astype(np.float32).reshape([1, 12, 1, 1]))
|
||||
|
||||
net = TestNetwork()
|
||||
grad = net(dout, x, offsets)
|
||||
print("grad_x:", grad[0])
|
||||
print("grad_offset:", grad[1])
|
||||
return grad
|
||||
|
||||
|
||||
class ForwardNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ForwardNet, self).__init__()
|
||||
stride = (1, 1, 1, 1)
|
||||
pad = (0, 0, 0, 0)
|
||||
ksize = (2, 2)
|
||||
self.deformable_offsets_grad_op = nn_ops.DeformableOffsets(stride, pad, ksize)
|
||||
|
||||
def construct(self, x, offsets):
|
||||
output = self.deformable_offsets_grad_op(x, offsets)
|
||||
return output
|
||||
|
||||
|
||||
class BackwardNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(BackwardNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
out = self.net(*inputs)
|
||||
return out, grad_all(self.net)(*inputs)
|
||||
|
||||
|
||||
def test_auto_diff():
|
||||
"""
|
||||
Feature: CPU operation.
|
||||
Description: Test of CPU operation: DeformableOffsetsGrad by auto diff.
|
||||
Expectation: No exception raised.
|
||||
"""
|
||||
x = Tensor(np.ones([1, 1, 2, 2]), dtype.float32)
|
||||
offsets = Tensor(np.array([0.1] * 12).astype(np.float32).reshape([1, 12, 1, 1]))
|
||||
forward_net = ForwardNet()
|
||||
net = BackwardNet(forward_net)
|
||||
grad = net(x, offsets)
|
||||
print("grad_x:", grad[0])
|
||||
print("grad_offset:", grad[1])
|
||||
return grad
|
||||
|
||||
|
||||
class NetDeformableOffsetsGrad(nn.Cell):
|
||||
def __init__(self, data_format):
|
||||
super(NetDeformableOffsetsGrad, self).__init__()
|
||||
strides = (1, 1, 1, 1)
|
||||
pads = (0, 0, 0, 0)
|
||||
ksize = (3, 3)
|
||||
self.grad_op = G.DeformableOffsetsGrad(strides, pads, ksize, data_format=data_format)
|
||||
|
||||
def construct(self, grad, input_x, offsets):
|
||||
return self.grad_op(grad, input_x, offsets)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
|
||||
def test_deformable_offsets_grad_nchw(data_type):
|
||||
"""
|
||||
Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: test the rightness of DeformableOffsetsGrad gpu kernel
|
||||
Expectation: the output is same as expected result
|
||||
"""
|
||||
net = NetDeformableOffsetsGrad(data_format="NCHW")
|
||||
dout = Tensor(np.ones([1, 2, 3, 3]).astype(data_type))
|
||||
x = Tensor(np.ones([1, 2, 4, 4]).astype(data_type))
|
||||
offsets = Tensor(np.ones([1, 27, 1, 1]).astype(data_type) * 0.1)
|
||||
output = net(dout, x, offsets)
|
||||
|
||||
expect_grad_x = np.array([[[0.081, 0.09, 0.09, 0.009],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.009, 0.01, 0.01, 0.001]],
|
||||
[[0.081, 0.09, 0.09, 0.009],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.09, 0.1, 0.1, 0.01],
|
||||
[0.009, 0.01, 0.01, 0.001]]]
|
||||
).astype(data_type)
|
||||
expect_grad_offset = np.array([0] * 18 + [2.0] * 9).astype(data_type).reshape([1, 27, 1, 1])
|
||||
rtol = 1e-5
|
||||
if data_type == np.float16:
|
||||
rtol = 1e-3
|
||||
assert np.allclose(output[0].asnumpy(), expect_grad_x, rtol)
|
||||
assert np.allclose(output[1].asnumpy(), expect_grad_offset, rtol)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
|
||||
def test_deformable_offsets_grad_nhwc(data_type):
|
||||
"""
|
||||
Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: test the rightness of DeformableOffsetsGrad gpu kernel
|
||||
Expectation: the output is same as expected result
|
||||
"""
|
||||
net = NetDeformableOffsetsGrad(data_format="NHWC")
|
||||
dout = Tensor(np.ones([1, 3, 3, 2]).astype(data_type))
|
||||
x = Tensor(np.ones([1, 4, 4, 2]).astype(data_type))
|
||||
offsets = Tensor(np.ones([1, 1, 1, 27]).astype(data_type) * 0.1)
|
||||
output = net(dout, x, offsets)
|
||||
expect_grad_x = np.array([[[0.081, 0.081],
|
||||
[0.09, 0.09],
|
||||
[0.09, 0.09],
|
||||
[0.009, 0.009]],
|
||||
[[0.09, 0.09],
|
||||
[0.1, 0.1],
|
||||
[0.1, 0.1],
|
||||
[0.01, 0.01]],
|
||||
[[0.09, 0.09],
|
||||
[0.1, 0.1],
|
||||
[0.1, 0.1],
|
||||
[0.01, 0.01]],
|
||||
[[0.009, 0.009],
|
||||
[0.01, 0.01],
|
||||
[0.01, 0.01],
|
||||
[0.001, 0.001]]
|
||||
]
|
||||
).astype(data_type)
|
||||
expect_grad_offset = np.array([0] * 18 + [2.0] * 9).astype(data_type).reshape([1, 1, 1, 27])
|
||||
rtol = 1e-5
|
||||
if data_type == np.float16:
|
||||
rtol = 1e-3
|
||||
assert np.allclose(output[0].asnumpy(), expect_grad_x, rtol)
|
||||
assert np.allclose(output[1].asnumpy(), expect_grad_offset, rtol)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_vmap():
|
||||
""""
|
||||
Feature: Feature: DeformableOffsetsGrad cpu kernel
|
||||
Description: Test case with vmap.
|
||||
Expectation: The results are as expected.
|
||||
"""
|
||||
|
||||
def cal_deformable_offsets_grad(dout, x, offsets):
|
||||
net = NetDeformableOffsetsGrad(data_format="NCHW")
|
||||
return net(dout, x, offsets)
|
||||
|
||||
dout = Tensor(np.arange(2 * 1 * 2 * 3 * 3).reshape(2, 1, 2, 3, 3), dtype.float32)
|
||||
x = Tensor(np.arange(2 * 1 * 2 * 4 * 4).reshape(2, 1, 2, 4, 4), dtype.float32)
|
||||
offsets = Tensor(np.arange(2 * 1 * 27 * 1 * 1).reshape(2, 1, 27, 1, 1) * 0.1, dtype.float32)
|
||||
|
||||
vmap_deformable_offset_grad = F.vmap(cal_deformable_offsets_grad, in_axes=(0, 0, 0), out_axes=0)
|
||||
out1 = vmap_deformable_offset_grad(dout, x, offsets)
|
||||
|
||||
def manually_batched(dout, x, offsets):
|
||||
output_dx = []
|
||||
output_d_offsets = []
|
||||
for i in range(x.shape[0]):
|
||||
dx, d_offsets = cal_deformable_offsets_grad(dout[i], x[i], offsets[i])
|
||||
output_dx.append(dx)
|
||||
output_d_offsets.append(d_offsets)
|
||||
|
||||
return F.stack(output_dx), F.stack(output_d_offsets)
|
||||
|
||||
out2 = manually_batched(dout, x, offsets)
|
||||
assert np.allclose(out1[0].asnumpy(), out2[0].asnumpy())
|
||||
assert np.allclose(out1[1].asnumpy(), out2[1].asnumpy())
|
Loading…
Reference in New Issue