forked from mindspore-Ecosystem/mindspore
!300 refactor kernel select priority scheme
Merge pull request !300 from lianliguang/refactor-kernel_select
This commit is contained in:
commit
f9dd47620c
|
@ -31,12 +31,13 @@ namespace mindspore {
|
|||
namespace device {
|
||||
namespace ascend {
|
||||
namespace {
|
||||
const float kWegihtBaseScore = 1;
|
||||
const float kFeatureMapBaseScore = 10;
|
||||
enum MatchCountPriority : int {
|
||||
MATCH_COUNT_PRIORITY_BEGIN = 0,
|
||||
MATCH_DTYPE_COUNT = MATCH_COUNT_PRIORITY_BEGIN,
|
||||
MATCH_FORMAT_COUNT,
|
||||
MATCH_SPECIAL_FORMAT_COUNT,
|
||||
MATCH_5D_FORMAT_COUNT,
|
||||
MATCH_OUTPUT_DTYPE_COUNT,
|
||||
MATCH_COUNT_PRIORITY_END
|
||||
};
|
||||
|
@ -82,13 +83,6 @@ bool IsValidKernelInfo(const std::shared_ptr<CNode> &kernel_node, const kernel::
|
|||
}
|
||||
return true;
|
||||
};
|
||||
if (AnfAlgo::GetCNodeName(kernel_node) == "Adam") {
|
||||
auto input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (AnfAlgo::GetPrevNodeOutputFormat(kernel_node, input_num - 1) !=
|
||||
kernel_build_info.GetInputFormat(input_num - 1)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (AnfAlgo::GetCNodeName(kernel_node) == prim::kPrimCast->name()) {
|
||||
return AnfAlgo::GetOutputInferDataType(kernel_node, 0) == kernel_build_info.GetOutputDeviceType(0) &&
|
||||
AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0) == kernel_build_info.GetInputDeviceType(0);
|
||||
|
@ -112,21 +106,7 @@ bool MatchInferOutputDataType(const CNodePtr &cnode, const kernel::KernelBuildIn
|
|||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
// Check input data type
|
||||
for (size_t input_index = 0; input_index < kernel_build_info.GetInputNum(); ++input_index) {
|
||||
AnfNodePtr cur_input = AnfAlgo::GetInputNode(cnode, input_index);
|
||||
MS_EXCEPTION_IF_NULL(cur_input);
|
||||
TypeId input_origin_type;
|
||||
if (cur_input->isa<Parameter>() && AnfAlgo::IsParameterWeight(cur_input->cast<ParameterPtr>())) {
|
||||
// weight
|
||||
input_origin_type = AnfAlgo::GetOutputDeviceDataType(cur_input, 0);
|
||||
} else if (cur_input->isa<ValueNode>()) {
|
||||
input_origin_type = AnfAlgo::GetOutputDeviceDataType(cur_input, 0);
|
||||
} else {
|
||||
// feature map
|
||||
input_origin_type = AnfAlgo::GetPrevNodeOutputInferDataType(cnode, input_index);
|
||||
}
|
||||
if (input_origin_type == kTypeUnknown) {
|
||||
continue;
|
||||
}
|
||||
TypeId input_origin_type = AnfAlgo::GetPrevNodeOutputInferDataType(cnode, input_index);
|
||||
if (kernel_build_info.GetInputDeviceType(input_index) != input_origin_type) {
|
||||
return false;
|
||||
}
|
||||
|
@ -140,6 +120,29 @@ bool MatchInferOutputDataType(const CNodePtr &cnode, const kernel::KernelBuildIn
|
|||
return true;
|
||||
}
|
||||
|
||||
string GetPriorityMatchFormat(const CNodePtr &cnode) {
|
||||
string priority_matched_format = kOpFormat_NC1HWC0;
|
||||
bool is_init = false;
|
||||
bool need_change_nd = false;
|
||||
for (size_t index = 0; index < AnfAlgo::GetInputTensorNum(cnode); ++index) {
|
||||
auto pre_output_format = AnfAlgo::GetPrevNodeOutputFormat(cnode, index);
|
||||
if (AnfAlgo::IsFeatureMapInput(cnode, index) &&
|
||||
kNeedTransFormatSet.find(pre_output_format) != kNeedTransFormatSet.end()) {
|
||||
priority_matched_format = !is_init ? priority_matched_format : pre_output_format;
|
||||
is_init = true;
|
||||
}
|
||||
// feature map has two or more special format;
|
||||
if (priority_matched_format != pre_output_format && pre_output_format != kOpFormat_DEFAULT) {
|
||||
priority_matched_format = kOpFormat_DEFAULT;
|
||||
}
|
||||
auto input_shape_size = AnfAlgo::GetPrevNodeOutputInferShape(cnode, index).size();
|
||||
need_change_nd = (need_change_nd || (input_shape_size != 4 && input_shape_size > 1));
|
||||
}
|
||||
if (need_change_nd) {
|
||||
priority_matched_format = kOpFormat_DEFAULT;
|
||||
}
|
||||
return priority_matched_format;
|
||||
}
|
||||
/**
|
||||
* compare two vector by priority, select a better vector, like compare two num, first compare highest num location,
|
||||
* if equal then next num location
|
||||
|
@ -172,34 +175,18 @@ void UpdateCurMatchCounts(const kernel::KernelBuildInfo &kernel_build_info, cons
|
|||
if (cur_kernelinfo_match_counts->size() < MATCH_COUNT_PRIORITY_END) {
|
||||
MS_LOG(EXCEPTION) << "Out of range cur_kernelinfo_match_counts " << MATCH_COUNT_PRIORITY_END;
|
||||
}
|
||||
auto pri_match_format = GetPriorityMatchFormat(kernel_node);
|
||||
for (size_t input_index = 0; input_index < AnfAlgo::GetInputTensorNum(kernel_node); ++input_index) {
|
||||
AnfNodePtr input_anf_node = AnfAlgo::GetInputNode(kernel_node, input_index);
|
||||
MS_EXCEPTION_IF_NULL(input_anf_node);
|
||||
// if a input parameter is a weight with default format, the input shouldn't participate the judge
|
||||
if (input_anf_node->isa<Parameter>()) {
|
||||
auto para = input_anf_node->cast<ParameterPtr>();
|
||||
if (AnfAlgo::IsParameterWeight(para) && AnfAlgo::GetOutputDeviceDataType(para, 0) == kTypeUnknown) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
auto base_score = AnfAlgo::IsFeatureMapInput(kernel_node, input_index) ? kFeatureMapBaseScore : kWegihtBaseScore;
|
||||
if (kernel_build_info.GetInputFormat(input_index) == AnfAlgo::GetPrevNodeOutputFormat(kernel_node, input_index)) {
|
||||
if (AnfAlgo::IsFeatureMapInput(kernel_node, input_index) &&
|
||||
kNeedTransFormatSet.find(kernel_build_info.GetInputFormat(input_index)) != kNeedTransFormatSet.end()) {
|
||||
(*cur_kernelinfo_match_counts)[MATCH_SPECIAL_FORMAT_COUNT]++;
|
||||
}
|
||||
(*cur_kernelinfo_match_counts)[MATCH_FORMAT_COUNT]++;
|
||||
(*cur_kernelinfo_match_counts)[MATCH_FORMAT_COUNT] += base_score;
|
||||
}
|
||||
if (kernel_build_info.GetInputDeviceType(input_index) ==
|
||||
AnfAlgo::GetPrevNodeOutputDeviceDataType(kernel_node, input_index)) {
|
||||
(*cur_kernelinfo_match_counts)[MATCH_DTYPE_COUNT]++;
|
||||
(*cur_kernelinfo_match_counts)[MATCH_DTYPE_COUNT] += base_score;
|
||||
}
|
||||
if (kernel_build_info.GetInputFormat(input_index) == kOpFormat_NC1HWC0) {
|
||||
// input is from a feature map & this input's shape is not 4d
|
||||
if (AnfAlgo::IsFeatureMapInput(kernel_node, input_index) &&
|
||||
AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, input_index).size() != kShape4dDims) {
|
||||
continue;
|
||||
}
|
||||
(*cur_kernelinfo_match_counts)[MATCH_5D_FORMAT_COUNT]++;
|
||||
if (kernel_build_info.GetInputFormat(input_index) == pri_match_format) {
|
||||
(*cur_kernelinfo_match_counts)[MATCH_SPECIAL_FORMAT_COUNT] += base_score;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -207,7 +194,7 @@ void UpdateCurMatchCounts(const kernel::KernelBuildInfo &kernel_build_info, cons
|
|||
// cal count of same output dtype between abstract and kernel info
|
||||
if (kernel_build_info.GetOutputDeviceType(output_index) ==
|
||||
AnfAlgo::GetOutputInferDataType(kernel_node, output_index)) {
|
||||
(*cur_kernelinfo_match_counts)[MATCH_OUTPUT_DTYPE_COUNT]++;
|
||||
(*cur_kernelinfo_match_counts)[MATCH_OUTPUT_DTYPE_COUNT] += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -517,7 +504,7 @@ void SelectKernelInfo(const CNodePtr &kernel_node) {
|
|||
std::vector<std::shared_ptr<kernel::KernelBuildInfo>> kernel_info_list;
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
kernel::KernelQuery(kernel_node, &kernel_info_list);
|
||||
std::vector<int> most_match_counts = {-1, -1, -1, -1, -1};
|
||||
std::vector<int> most_match_counts = {-1, -1, -1, -1};
|
||||
int selected_index = -1;
|
||||
auto context_ptr = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(context_ptr);
|
||||
|
@ -527,7 +514,7 @@ void SelectKernelInfo(const CNodePtr &kernel_node) {
|
|||
std::vector<int> node_mix_precision_datatype_index;
|
||||
std::vector<TypeId> node_mix_precision_datatype;
|
||||
for (size_t info_index = 0; info_index < kernel_info_list.size(); ++info_index) {
|
||||
std::vector<int> cur_kernel_info_match_counts = {0, 0, 0, 0, 0};
|
||||
std::vector<int> cur_kernel_info_match_counts = {0, 0, 0, 0};
|
||||
auto kernel_build_info = *(kernel_info_list[info_index]);
|
||||
if (!IsValidKernelInfo(kernel_node, kernel_build_info)) {
|
||||
continue;
|
||||
|
|
Loading…
Reference in New Issue