fix pylint check issues

This commit is contained in:
cristoval 2020-05-25 15:34:01 +08:00
parent 848d19207f
commit f6c20178d2
51 changed files with 163 additions and 242 deletions

View File

@ -48,15 +48,15 @@ def test_argmax():
expect2 = np.array([1, 0, 0, 0]).astype(np.int32) expect2 = np.array([1, 0, 0, 0]).astype(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
Argmax = NetArgmax() argmax = NetArgmax()
output = Argmax(x) output = argmax(x)
assert (output[0].asnumpy() == expect1).all() assert (output[0].asnumpy() == expect1).all()
assert (output[1].asnumpy() == expect2).all() assert (output[1].asnumpy() == expect2).all()
assert (output[2].asnumpy() == expect2).all() assert (output[2].asnumpy() == expect2).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
Argmax1 = NetArgmax() argmax1 = NetArgmax()
output1 = Argmax(x) output1 = argmax1(x)
assert (output1[0].asnumpy() == expect1).all() assert (output1[0].asnumpy() == expect1).all()
assert (output1[1].asnumpy() == expect2).all() assert (output1[1].asnumpy() == expect2).all()
assert (output1[2].asnumpy() == expect2).all() assert (output1[2].asnumpy() == expect2).all()

View File

@ -23,13 +23,13 @@ from mindspore.ops import operations as P
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, value): def __init__(self, param):
super(Net, self).__init__() super(Net, self).__init__()
self.var = Parameter(value, name="var") self.var = Parameter(param, name="var")
self.assign = P.Assign() self.assign = P.Assign()
def construct(self, value): def construct(self, param):
return self.assign(self.var, value) return self.assign(self.var, param)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)

View File

@ -20,9 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
@ -38,7 +35,7 @@ class BatchMatMulNet(nn.Cell):
return self.batch_matmul(x, y) return self.batch_matmul(x, y)
def test_4D(): def test_4d():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
@ -60,7 +57,7 @@ def test_4D():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_a(): def test_4d_transpose_a():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float32)
@ -82,7 +79,7 @@ def test_4D_transpose_a():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_b(): def test_4d_transpose_b():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
@ -104,7 +101,7 @@ def test_4D_transpose_b():
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_4D_transpose_ab(): def test_4d_transpose_ab():
input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32) input_x = Tensor(np.arange(2 * 4 * 3 * 1).reshape(2, 4, 3, 1), mstype.float32)
input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32) input_y = Tensor(np.arange(2 * 4 * 4 * 3).reshape(2, 4, 4, 3), mstype.float32)
@ -122,17 +119,7 @@ def test_4D_transpose_ab():
[[5612, 5810, 6008, 6206]]]] [[5612, 5810, 6008, 6206]]]]
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()
def test_4d_fp16():
class BatchMatMulNet(nn.Cell):
def __init__(self, transpose_a=False, transpose_b=False):
super(BatchMatMulNet, self).__init__()
self.batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
def construct(self, x, y):
return self.batch_matmul(x, y)
def test_4D_fp16():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16) input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16) input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)

View File

@ -68,10 +68,10 @@ def test_batchnrom_fold2():
current_step = np.array([0]).astype('int32') current_step = np.array([0]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean),
Tensor(running_std), Tensor(running_mean), Tensor(current_step)) Tensor(running_std), Tensor(running_mean), Tensor(current_step))
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, expect = ((x + beta.reshape(-1, 1, 1) -
1) if current_step >= freeze_bn else (gamma * running_mean / running_std).reshape(-1, 1, 1) if current_step >= freeze_bn else
x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1, x * (running_std / batch_std).reshape(-1, 1, 1) +
1)) (beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
error = np.ones(shape=expect.shape) * 1.0e-6 error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
@ -80,10 +80,9 @@ def test_batchnrom_fold2():
current_step = np.array([100000]).astype('int32') current_step = np.array([100000]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std), output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std),
Tensor(running_mean), Tensor(current_step)) Tensor(running_mean), Tensor(current_step))
expect = (x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, expect = ((x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, 1)
1) if current_step >= freeze_bn else if current_step >= freeze_bn else x * (batch_std / running_std).reshape(-1, 1, 1) +
x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1, (beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
1))
error = np.ones(shape=expect.shape) * 1.0e-6 error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)

View File

@ -38,8 +38,8 @@ class Net(nn.Cell):
def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std): def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std):
n = x.shape[0] * x.shape[2] * x.shape[3] n = x.shape[0] * x.shape[2] * x.shape[3]
dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * ( dx = (d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) *
x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n (x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n)
return dx return dx

View File

@ -86,7 +86,7 @@ def test_batchnorm_fold2():
ms_var = Tensor(variance) ms_var = Tensor(variance)
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
Tensor(current_step)) Tensor(current_step))
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) expect1, expect2, expect3, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_mean.asnumpy(), expect1, rtol=1.e-7, atol=1.e-5)
assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_var.asnumpy(), expect2, rtol=1.e-7, atol=1.e-5)
assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5) assert np.allclose(ms_mean.asnumpy(), expect3, rtol=1.e-7, atol=1.e-5)
@ -108,7 +108,7 @@ def test_batchnorm_fold_freeze():
ms_var = Tensor(variance) ms_var = Tensor(variance)
batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var, batch_mean, batch_var, delay_mean, delay_std = net(Tensor(x), ms_mean, ms_var,
Tensor(current_step)) Tensor(current_step))
expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) _, _, _, _, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12)
assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_mean.asnumpy(), np.zeros_like(mean), rtol=1.e-7, atol=1.e-5)
assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5) assert np.allclose(batch_var.asnumpy(), np.ones_like(mean), rtol=1.e-7, atol=1.e-5)
assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5) assert np.allclose(ms_mean.asnumpy(), mean, rtol=1.e-7, atol=1.e-5)

View File

@ -61,9 +61,6 @@ def test_train_forward():
[-0.0281, 0.9119, 1.3819, 1.8518], [-0.0281, 0.9119, 1.3819, 1.8518],
[2.7918, 0.4419, -0.4981, 0.9119], [2.7918, 0.4419, -0.4981, 0.9119],
[1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32) [1.8518, 0.9119, 2.3218, -0.9680]]]]).astype(np.float32)
grad = np.array([[
[[1, 2, 7, 1], [4, 2, 1, 3], [1, 6, 5, 2], [2, 4, 3, 2]],
[[9, 4, 3, 5], [1, 3, 7, 6], [5, 7, 9, 9], [1, 4, 6, 8]]]]).astype(np.float32)
weight = np.ones(2).astype(np.float32) weight = np.ones(2).astype(np.float32)
bias = np.ones(2).astype(np.float32) bias = np.ones(2).astype(np.float32)

View File

@ -16,10 +16,8 @@
import numpy as np import numpy as np
import pytest import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context import mindspore.context as context
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P from mindspore.ops import operations as P

View File

@ -47,9 +47,9 @@ def test_cast():
net = Net() net = Net()
output = net(x0, t0, x1, t1) output = net(x0, t0, x1, t1)
type0 = output[0].asnumpy().dtype type0 = output[0].asnumpy().dtype
assert (type0 == 'float16') assert type0 == 'float16'
type1 = output[1].asnumpy().dtype type1 = output[1].asnumpy().dtype
assert (type1 == 'float32') assert type1 == 'float32'
@pytest.mark.level0 @pytest.mark.level0
@ -65,6 +65,6 @@ def test_cast1():
net = Net() net = Net()
output = net(x0, t0, x1, t1) output = net(x0, t0, x1, t1)
type0 = output[0].asnumpy().dtype type0 = output[0].asnumpy().dtype
assert (type0 == 'float32') assert type0 == 'float32'
type1 = output[1].asnumpy().dtype type1 = output[1].asnumpy().dtype
assert (type1 == 'float32') assert type1 == 'float32'

View File

@ -66,13 +66,6 @@ def test_conv2d_backprop_filter():
[-3, -2, -3, -16]]]]).astype(np.float32)) [-3, -2, -3, -16]]]]).astype(np.float32))
conv2d_filter = Conv2dFilter() conv2d_filter = Conv2dFilter()
output = conv2d_filter(out, x, w) output = conv2d_filter(out, x, w)
print("================================")
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
expect = np.array([[[[-60, -142, -265], expect = np.array([[[[-60, -142, -265],
[-104, -211, -322], [-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32) [-102, -144, -248]]]]).astype(np.float32)

View File

@ -20,8 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(device_target='GPU') context.set_context(device_target='GPU')

View File

@ -57,16 +57,6 @@ def test_conv2d():
conv2d = NetConv2d() conv2d = NetConv2d()
output = conv2d(x, w) output = conv2d(x, w)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()
"""
expect output:
[[[[ 45. 48. 51.]
[ 54. 57. 60.]
[ 63. 66. 69.]]
[[126. 138. 150.]
[162. 174. 186.]
[198. 210. 222.]]]]
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
conv2d = NetConv2d() conv2d = NetConv2d()
output = conv2d(x, w) output = conv2d(x, w)

View File

@ -14,7 +14,6 @@
# ============================================================================ # ============================================================================
import numpy as np import numpy as np
import os
import pytest import pytest
import mindspore.context as context import mindspore.context as context
@ -51,5 +50,5 @@ def test_correction_mul_grad():
expect = [0, 0] expect = [0, 0]
expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1))) expect[0] = (dout * np.reshape(batch_std / running_std, (co, 1, 1, 1)))
expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std) expect[1] = (np.sum(dout * x, (1, 2, 3)) / running_std)
for i, v in enumerate(output): for i, _ in enumerate(output):
assert (np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5)) assert np.allclose(output[i].asnumpy(), expect[i], rtol=1.e-5, atol=1.e-5)

View File

@ -50,4 +50,4 @@ def test_correction_mul():
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(diff > error * -1) assert np.all(diff > error * -1)
assert (output.shape() == expect.shape) assert output.shape() == expect.shape

View File

@ -68,8 +68,8 @@ class GradData(nn.Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network self.network = network
def construct(self, input, output_grad): def construct(self, inputs, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(inputs, output_grad)
class GradWeight(nn.Cell): class GradWeight(nn.Cell):
@ -172,8 +172,8 @@ class Grad(nn.Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network self.network = network
def construct(self, input, bias, dy): def construct(self, inputs, bias, dy):
return self.grad(self.network)(input, bias, dy) return self.grad(self.network)(inputs, bias, dy)
@pytest.mark.level0 @pytest.mark.level0

View File

@ -50,16 +50,16 @@ def test_equal():
equal = NetEqual() equal = NetEqual()
output0 = equal(x0, y0) output0 = equal(x0, y0)
assert np.all(output0.asnumpy() == expect0) assert np.all(output0.asnumpy() == expect0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = equal(x1, y1) output1 = equal(x1, y1)
assert np.all(output1.asnumpy() == expect1) assert np.all(output1.asnumpy() == expect1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
equal = NetEqual() equal = NetEqual()
output0 = equal(x0, y0) output0 = equal(x0, y0)
assert np.all(output0.asnumpy() == expect0) assert np.all(output0.asnumpy() == expect0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = equal(x1, y1) output1 = equal(x1, y1)
assert np.all(output1.asnumpy() == expect1) assert np.all(output1.asnumpy() == expect1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape

View File

@ -49,19 +49,19 @@ def test_exp():
output0 = exp(x0) output0 = exp(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = exp(x1) output1 = exp(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
exp = NetExp() exp = NetExp()
output0 = exp(x0) output0 = exp(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = exp(x1) output1 = exp(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape

View File

@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G
@ -38,11 +37,6 @@ class NetFlattenGrad(nn.Cell):
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_flatten_grad(): def test_flatten_grad():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
"""
expect output:
[ [-0.1 0.3 3.6]
[ 0.4 0.5 -3.2] ]
"""
expect = np.array([[-0.1, 0.3, 3.6], expect = np.array([[-0.1, 0.3, 3.6],
[0.4, 0.5, -3.2]]).astype(np.float32) [0.4, 0.5, -3.2]]).astype(np.float32)

View File

@ -37,11 +37,6 @@ class NetFlatten(nn.Cell):
def test_flatten(): def test_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)) x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32) expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
"""
expect output:
[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetFlatten() flatten = NetFlatten()
output = flatten(x) output = flatten(x)

View File

@ -68,7 +68,7 @@ x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32)
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_status(): def test_status():
ms_status = Net(); ms_status = Net()
output1 = ms_status(Tensor(x1)) output1 = ms_status(Tensor(x1))
output2 = ms_status(Tensor(x2)) output2 = ms_status(Tensor(x2))
output3 = ms_status(Tensor(x3)) output3 = ms_status(Tensor(x3))
@ -84,7 +84,7 @@ def test_status():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_nan(): def test_nan():
ms_isnan = Netnan(); ms_isnan = Netnan()
output1 = ms_isnan(Tensor(x1)) output1 = ms_isnan(Tensor(x1))
output2 = ms_isnan(Tensor(x2)) output2 = ms_isnan(Tensor(x2))
output3 = ms_isnan(Tensor(x3)) output3 = ms_isnan(Tensor(x3))
@ -100,7 +100,7 @@ def test_nan():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_inf(): def test_inf():
ms_isinf = Netinf(); ms_isinf = Netinf()
output1 = ms_isinf(Tensor(x1)) output1 = ms_isinf(Tensor(x1))
output2 = ms_isinf(Tensor(x2)) output2 = ms_isinf(Tensor(x2))
output3 = ms_isinf(Tensor(x3)) output3 = ms_isinf(Tensor(x3))
@ -116,7 +116,7 @@ def test_inf():
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_finite(): def test_finite():
ms_isfinite = Netfinite(); ms_isfinite = Netfinite()
output1 = ms_isfinite(Tensor(x1)) output1 = ms_isfinite(Tensor(x1))
output2 = ms_isfinite(Tensor(x2)) output2 = ms_isfinite(Tensor(x2))
output3 = ms_isfinite(Tensor(x3)) output3 = ms_isfinite(Tensor(x3))

View File

@ -913,16 +913,16 @@ class GatherNet2(nn.Cell):
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
def test_gather2(): def test_gather2():
x = Tensor(np.array([[4., 5., 4., 1., 5., ], x = Tensor(np.array([[4., 5., 4., 1., 5.,],
[4., 9., 5., 6., 4., ], [4., 9., 5., 6., 4.,],
[9., 8., 4., 3., 6., ], [9., 8., 4., 3., 6.,],
[0., 4., 2., 2., 8., ], [0., 4., 2., 2., 8.,],
[1., 8., 6., 2., 8., ], [1., 8., 6., 2., 8.,],
[8., 1., 9., 7., 3., ], [8., 1., 9., 7., 3.,],
[7., 9., 2., 5., 7., ], [7., 9., 2., 5., 7.,],
[9., 8., 6., 8., 5., ], [9., 8., 6., 8., 5.,],
[3., 7., 2., 7., 4., ], [3., 7., 2., 7., 4.,],
[4., 2., 8., 2., 9., ]] [4., 2., 8., 2., 9.,]]
).astype(np.float32)) ).astype(np.float32))
indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32))

View File

@ -19,8 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

View File

@ -50,10 +50,10 @@ def test_log():
output1 = log(x1) output1 = log(x1)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
log = NetLog() log = NetLog()
@ -61,7 +61,7 @@ def test_log():
output1 = log(x1) output1 = log(x1)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape

View File

@ -27,8 +27,8 @@ class NetAnd(Cell):
super(NetAnd, self).__init__() super(NetAnd, self).__init__()
self.logicaland = P.LogicalAnd() self.logicaland = P.LogicalAnd()
def construct(self, x, y): def construct(self, input_x, input_y):
return self.logicaland(x, y) return self.logicaland(input_x, input_y)
class NetOr(Cell): class NetOr(Cell):
@ -36,8 +36,8 @@ class NetOr(Cell):
super(NetOr, self).__init__() super(NetOr, self).__init__()
self.logicalor = P.LogicalOr() self.logicalor = P.LogicalOr()
def construct(self, x, y): def construct(self, input_x, input_y):
return self.logicalor(x, y) return self.logicalor(input_x, input_y)
class NetNot(Cell): class NetNot(Cell):
@ -45,8 +45,8 @@ class NetNot(Cell):
super(NetNot, self).__init__() super(NetNot, self).__init__()
self.logicalnot = P.LogicalNot() self.logicalnot = P.LogicalNot()
def construct(self, x): def construct(self, input_x):
return self.logicalnot(x) return self.logicalnot(input_x)
x = np.array([True, False, False]).astype(np.bool) x = np.array([True, False, False]).astype(np.bool)

View File

@ -35,8 +35,8 @@ def test_logsoftmax():
[-3.452001, -1.2546989, -1.4618242, -0.79552734]]).astype(np.float32) [-3.452001, -1.2546989, -1.4618242, -0.79552734]]).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
LogSoftmax = P.LogSoftmax() logSoftmax = P.LogSoftmax()
output = LogSoftmax(Tensor(x)) output = logSoftmax(Tensor(x))
assert np.allclose(output.asnumpy(), expect) assert np.allclose(output.asnumpy(), expect)
@ -134,7 +134,7 @@ def test_logsoftmaxgrad1():
[-0.01768187, 0.26872346, -0.5037259, -0.3376058, -0.3291146, 1.4752979, -0.25972134, 0.8869053, [-0.01768187, 0.26872346, -0.5037259, -0.3376058, -0.3291146, 1.4752979, -0.25972134, 0.8869053,
0.25325722, -0.13946185], 0.25325722, -0.13946185],
[-0.5247209, 0.70192003, -1.0808672, 1.4858199, -1.1273282, 0.20728993, 0.38918605, 0.08162117, [-0.5247209, 0.70192003, -1.0808672, 1.4858199, -1.1273282, 0.20728993, 0.38918605, 0.08162117,
0.10445589, 0.3220427]], ).astype(np.float32) 0.10445589, 0.3220427]],).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = LogSoftmax(0) net = LogSoftmax(0)

View File

@ -23,7 +23,6 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import ParameterTuple, Parameter from mindspore.common.parameter import ParameterTuple, Parameter
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.ops import composite as C from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(device_target='GPU') context.set_context(device_target='GPU')
@ -81,7 +80,7 @@ class LstmNet(nn.Cell):
-2.9055e-01, -2.8129e-01, 6.0219e-01, 4.9193e-01, 3.3115e-01], -2.9055e-01, -2.8129e-01, 6.0219e-01, 4.9193e-01, 3.3115e-01],
[-5.6894e-01, -5.0359e-01, 4.7491e-01, 5.8110e-01, -5.4921e-01, [-5.6894e-01, -5.0359e-01, 4.7491e-01, 5.8110e-01, -5.4921e-01,
-6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape( -6.1343e-01, -5.8236e-02, -3.7682e-01, 4.8338e-01, -2.1551e-01]]).astype(np.float32).reshape(
[1, -1]) [1, -1])
whh = np.array([[-0.4820, -0.2350], whh = np.array([[-0.4820, -0.2350],
[-0.1195, 0.0519], [-0.1195, 0.0519],
@ -205,7 +204,7 @@ class BiLstmNet(nn.Cell):
[0.0299, -0.6071, -0.4683, -0.3363, -0.0044, -0.0007, 0.2700, 0.0202, -0.2880, -0.6869], [0.0299, -0.6071, -0.4683, -0.3363, -0.0044, -0.0007, 0.2700, 0.0202, -0.2880, -0.6869],
[0.3025, -0.2461, -0.5128, 0.6327, -0.1438, -0.5100, 0.1924, 0.2023, 0.3129, 0.2271], [0.3025, -0.2461, -0.5128, 0.6327, -0.1438, -0.5100, 0.1924, 0.2023, 0.3129, 0.2271],
[0.3777, 0.0546, 0.4790, -0.1895, 0.3588, 0.4490, 0.6850, 0.6240, -0.2739, -0.4474]]).astype( [0.3777, 0.0546, 0.4790, -0.1895, 0.3588, 0.4490, 0.6850, 0.6240, -0.2739, -0.4474]]).astype(
np.float32).reshape([1, -1]) np.float32).reshape([1, -1])
whh = np.array([[0.6346, -0.6366], whh = np.array([[0.6346, -0.6366],
[-0.0248, -0.6156], [-0.0248, -0.6156],
@ -394,7 +393,7 @@ class MultiLayerBiLstmNet(nn.Cell):
5.5428e-01, 1.0429e-01, 5.1322e-01, 1.9406e-01], 5.5428e-01, 1.0429e-01, 5.1322e-01, 1.9406e-01],
[3.9698e-01, -5.2101e-01, 5.1372e-01, -3.9866e-01, 1.0115e-01, -4.1290e-02, [3.9698e-01, -5.2101e-01, 5.1372e-01, -3.9866e-01, 1.0115e-01, -4.1290e-02,
-3.0980e-01, 2.1607e-01, 4.8420e-01, -1.9267e-01]]).astype(np.float32).reshape( -3.0980e-01, 2.1607e-01, 4.8420e-01, -1.9267e-01]]).astype(np.float32).reshape(
[1, -1]) [1, -1])
whh_reverse_l0 = np.array([[-0.3231, -0.3960], whh_reverse_l0 = np.array([[-0.3231, -0.3960],
[-0.1625, -0.3032], [-0.1625, -0.3032],
@ -662,7 +661,7 @@ class Net(nn.Cell):
[-0.4520, 0.4201, -0.2374, -0.1556, -0.4175, -0.6834, 0.3096, -0.1581, 0.0127, 0.6872], [-0.4520, 0.4201, -0.2374, -0.1556, -0.4175, -0.6834, 0.3096, -0.1581, 0.0127, 0.6872],
[0.1788, -0.5442, -0.3675, -0.2887, -0.3004, 0.5813, 0.1618, 0.6875, -0.4678, 0.0071], [0.1788, -0.5442, -0.3675, -0.2887, -0.3004, 0.5813, 0.1618, 0.6875, -0.4678, 0.0071],
[-0.6453, -0.2528, 0.5675, -0.5154, -0.4129, -0.0214, 0.5539, 0.0343, 0.1712, 0.5644]]).astype( [-0.6453, -0.2528, 0.5675, -0.5154, -0.4129, -0.0214, 0.5539, 0.0343, 0.1712, 0.5644]]).astype(
np.float32).reshape([1, -1]) np.float32).reshape([1, -1])
whh_reverse_l0 = np.array([[-0.6657, 0.6330], whh_reverse_l0 = np.array([[-0.6657, 0.6330],
[-0.2290, 0.6556], [-0.2290, 0.6556],
@ -927,7 +926,7 @@ class LstmNetWithDropout(nn.Cell):
[0.5142, 0.0790, -0.1123, -0.2351, 0.3982, -0.6351, 0.5906, 0.3917, -0.0850, -0.5397], [0.5142, 0.0790, -0.1123, -0.2351, 0.3982, -0.6351, 0.5906, 0.3917, -0.0850, -0.5397],
[-0.4795, -0.6576, 0.5693, 0.0047, -0.6626, 0.1013, -0.4015, -0.4040, -0.2817, 0.4430], [-0.4795, -0.6576, 0.5693, 0.0047, -0.6626, 0.1013, -0.4015, -0.4040, -0.2817, 0.4430],
[0.0251, -0.3035, -0.6026, 0.2693, -0.2749, 0.1501, -0.5778, 0.5570, -0.7065, -0.6196]]).astype( [0.0251, -0.3035, -0.6026, 0.2693, -0.2749, 0.1501, -0.5778, 0.5570, -0.7065, -0.6196]]).astype(
np.float32).reshape([1, -1]) np.float32).reshape([1, -1])
whh = np.array([[-0.4344, -0.2529], whh = np.array([[-0.4344, -0.2529],
[0.0377, 0.7046], [0.0377, 0.7046],

View File

@ -53,15 +53,15 @@ def test_maximum():
error = np.ones(shape=[1, 3]) * 1.0e-5 error = np.ones(shape=[1, 3]) * 1.0e-5
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
max = Net() max_op = Net()
output = max(x, y) output = max_op(x, y)
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(-diff < error) assert np.all(-diff < error)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
max = Net() max_op_2 = Net()
output = max(x, y) output = max_op_2(x, y)
diff = output.asnumpy() - expect diff = output.asnumpy() - expect
assert np.all(diff < error) assert np.all(diff < error)
assert np.all(-diff < error) assert np.all(-diff < error)

View File

@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G

View File

@ -16,7 +16,6 @@
import numpy as np import numpy as np
import pytest import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context import mindspore.context as context
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.nn import Cell from mindspore.nn import Cell

View File

@ -57,17 +57,12 @@ def test_momentum():
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train() train_network.set_train()
losses = [] losses = []
for i in range(epoch): for _ in range(epoch):
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
label = Tensor(np.array([0]).astype(np.int32)) label = Tensor(np.array([0]).astype(np.int32))
loss = train_network(data, label) loss = train_network(data, label)
losses.append(loss) losses.append(loss)
""" _ = np.ones(shape=[1, 10]) * 1.0e-6
expect output:
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
error = np.ones(shape=[1, 10]) * 1.0e-6
return losses return losses

View File

@ -64,35 +64,35 @@ def test_mul():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = mul(x1, y1) output1 = mul(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
output2 = mul(x2, y2) output2 = mul(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
output3 = mul(x3, y3) output3 = mul(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
output4 = mul(x4, y4) output4 = mul(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
mul = NetMul() mul = NetMul()
@ -101,32 +101,32 @@ def test_mul():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = mul(x1, y1) output1 = mul(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
output2 = mul(x2, y2) output2 = mul(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
output3 = mul(x3, y3) output3 = mul(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
output4 = mul(x4, y4) output4 = mul(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape

View File

@ -49,19 +49,19 @@ def test_neg():
output0 = neg(x0) output0 = neg(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = neg(x1) output1 = neg(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
neg = NetNeg() neg = NetNeg()
output0 = neg(x0) output0 = neg(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = neg(x1) output1 = neg(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape

View File

@ -20,7 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(device_target='GPU') context.set_context(device_target='GPU')

View File

@ -19,9 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
@ -67,35 +64,35 @@ def test_real_div():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = real_div(x1, y1) output1 = real_div(x1, y1)
expect1 = np.divide(x1_np, y1_np) expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
output2 = real_div(x2, y2) output2 = real_div(x2, y2)
expect2 = np.divide(x2_np, y2_np) expect2 = np.divide(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
output3 = real_div(x3, y3) output3 = real_div(x3, y3)
expect3 = np.divide(x3_np, y3_np) expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
output4 = real_div(x4, y4) output4 = real_div(x4, y4)
expect4 = np.divide(x4_np, y4_np) expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
real_div = NetRealDiv() real_div = NetRealDiv()
@ -104,32 +101,32 @@ def test_real_div():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = real_div(x1, y1) output1 = real_div(x1, y1)
expect1 = np.divide(x1_np, y1_np) expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
output2 = real_div(x2, y2) output2 = real_div(x2, y2)
expect2 = np.divide(x2_np, y2_np) expect2 = np.divide(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
output3 = real_div(x3, y3) output3 = real_div(x3, y3)
expect3 = np.divide(x3_np, y3_np) expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
output4 = real_div(x4, y4) output4 = real_div(x4, y4)
expect4 = np.divide(x4_np, y4_np) expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape

View File

@ -49,19 +49,19 @@ def test_Reciprocal():
output0 = reciprocal(x0) output0 = reciprocal(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = reciprocal(x1) output1 = reciprocal(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
reciprocal = NetReciprocal() reciprocal = NetReciprocal()
output0 = reciprocal(x0) output0 = reciprocal(x0)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = reciprocal(x1) output1 = reciprocal(x1)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape

View File

@ -128,43 +128,43 @@ def test_ReduceMax():
diff0 = abs(output[0].asnumpy() - expect0) diff0 = abs(output[0].asnumpy() - expect0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape) assert output[0].shape() == expect0.shape
expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1) expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1) diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape) assert output[1].shape() == expect1.shape
expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2) expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2) diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape) assert output[2].shape() == expect2.shape
expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3) expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3) diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape) assert output[3].shape() == expect3.shape
expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4) expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4) diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape) assert output[4].shape() == expect4.shape
expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5) expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5) diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5 error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5) assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape) assert output[5].shape() == expect5.shape
expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6) expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6) diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5 error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6) assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape) assert output[6].shape() == expect6.shape
expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7) expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7) diff7 = abs(output[7].asnumpy() - expect7)

View File

@ -180,88 +180,88 @@ def test_ReduceMean():
diff0 = abs(output[0].asnumpy() - expect0) diff0 = abs(output[0].asnumpy() - expect0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape) assert output[0].shape() == expect0.shape
expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1) expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1) diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape) assert output[1].shape() == expect1.shape
expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2) expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2) diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape) assert output[2].shape() == expect2.shape
expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3) expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3) diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape) assert output[3].shape() == expect3.shape
expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4) expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4) diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape) assert output[4].shape() == expect4.shape
expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5) expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5) diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5 error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5) assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape) assert output[5].shape() == expect5.shape
expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6) expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6) diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5 error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6) assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape) assert output[6].shape() == expect6.shape
expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7) expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7) diff7 = abs(output[7].asnumpy() - expect7)
error7 = np.ones(shape=expect7.shape) * 1.0e-5 error7 = np.ones(shape=expect7.shape) * 1.0e-5
assert np.all(diff7 < error7) assert np.all(diff7 < error7)
assert (output[7].shape() == expect7.shape) assert output[7].shape() == expect7.shape
expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8) expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8)
diff8 = abs(output[8].asnumpy() - expect8) diff8 = abs(output[8].asnumpy() - expect8)
error8 = np.ones(shape=expect8.shape) * 1.0e-5 error8 = np.ones(shape=expect8.shape) * 1.0e-5
assert np.all(diff8 < error8) assert np.all(diff8 < error8)
assert (output[8].shape() == expect8.shape) assert output[8].shape() == expect8.shape
expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9) expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9)
diff9 = abs(output[9].asnumpy() - expect9) diff9 = abs(output[9].asnumpy() - expect9)
error9 = np.ones(shape=expect9.shape) * 1.0e-5 error9 = np.ones(shape=expect9.shape) * 1.0e-5
assert np.all(diff9 < error9) assert np.all(diff9 < error9)
assert (output[9].shape() == expect9.shape) assert output[9].shape() == expect9.shape
expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10) expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10)
diff10 = abs(output[10].asnumpy() - expect10) diff10 = abs(output[10].asnumpy() - expect10)
error10 = np.ones(shape=expect10.shape) * 1.0e-5 error10 = np.ones(shape=expect10.shape) * 1.0e-5
assert np.all(diff10 < error10) assert np.all(diff10 < error10)
assert (output[10].shape() == expect10.shape) assert output[10].shape() == expect10.shape
expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11) expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11)
diff11 = abs(output[11].asnumpy() - expect11) diff11 = abs(output[11].asnumpy() - expect11)
error11 = np.ones(shape=expect11.shape) * 1.0e-5 error11 = np.ones(shape=expect11.shape) * 1.0e-5
assert np.all(diff11 < error11) assert np.all(diff11 < error11)
assert (output[11].shape() == expect11.shape) assert output[11].shape() == expect11.shape
expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12) expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12)
diff12 = abs(output[12].asnumpy() - expect12) diff12 = abs(output[12].asnumpy() - expect12)
error12 = np.ones(shape=expect12.shape) * 1.0e-5 error12 = np.ones(shape=expect12.shape) * 1.0e-5
assert np.all(diff12 < error12) assert np.all(diff12 < error12)
assert (output[12].shape() == expect12.shape) assert output[12].shape() == expect12.shape
expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13) expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13)
diff13 = abs(output[13].asnumpy() - expect13) diff13 = abs(output[13].asnumpy() - expect13)
error13 = np.ones(shape=expect13.shape) * 1.0e-5 error13 = np.ones(shape=expect13.shape) * 1.0e-5
assert np.all(diff13 < error13) assert np.all(diff13 < error13)
assert (output[13].shape() == expect13.shape) assert output[13].shape() == expect13.shape
expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14) expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14)
diff14 = abs(output[14].asnumpy() - expect14) diff14 = abs(output[14].asnumpy() - expect14)
error14 = np.ones(shape=expect14.shape) * 1.0e-5 error14 = np.ones(shape=expect14.shape) * 1.0e-5
assert np.all(diff14 < error14) assert np.all(diff14 < error14)
assert (output[14].shape() == expect14.shape) assert output[14].shape() == expect14.shape

View File

@ -19,7 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G
@ -42,9 +41,9 @@ def test_relu6_grad():
dy = Tensor(np.array([[[[1, 1, 1], dy = Tensor(np.array([[[[1, 1, 1],
[1, 1, 1], [1, 1, 1],
[1, 1, 1]]]]).astype(np.float32)) [1, 1, 1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 0, ], expect = np.array([[[[0, 1, 0,],
[1, 0, 0, ], [1, 0, 0,],
[0, 1, 0, ]]]]).astype(np.float32) [0, 1, 0,]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6 error = np.ones(shape=[3, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

View File

@ -38,8 +38,8 @@ def test_relu6():
x = Tensor(np.array([[[[-1, 1, 10], x = Tensor(np.array([[[[-1, 1, 10],
[5.9, 6.1, 6], [5.9, 6.1, 6],
[10, 1, -1]]]]).astype(np.float32)) [10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 6, ], expect = np.array([[[[0, 1, 6,],
[5.9, 6, 6, ], [5.9, 6, 6,],
[6, 1, 0.]]]]).astype(np.float32) [6, 1, 0.]]]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")

View File

@ -38,8 +38,8 @@ def test_relu():
x = Tensor(np.array([[[[-1, 1, 10], x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1], [1, -1, 1],
[10, 1, -1]]]]).astype(np.float32)) [10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0, 1, 10, ], expect = np.array([[[[0, 1, 10,],
[1, 0, 1, ], [1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32) [10, 1, 0.]]]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")

View File

@ -27,8 +27,8 @@ class Net(nn.Cell):
super(Net, self).__init__() super(Net, self).__init__()
self.select = P.Select() self.select = P.Select()
def construct(self, cond, x, y): def construct(self, cond, input_x, input_y):
return self.select(cond, x, y) return self.select(cond, input_x, input_y)
cond = np.array([[True, False], [True, False]]).astype(np.bool) cond = np.array([[True, False], [True, False]]).astype(np.bool)

View File

@ -41,8 +41,8 @@ def test_slice():
[[4., -4., 4.]]] [[4., -4., 4.]]]
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
slice = Slice() slice_op = Slice()
output = slice(x) output = slice_op(x)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()

View File

@ -20,7 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G from mindspore.ops.operations import _grad_ops as G
context.set_context(device_target='GPU') context.set_context(device_target='GPU')

View File

@ -19,10 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
class NetSoftmaxCrossEntropyWithLogits(nn.Cell): class NetSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self): def __init__(self):

View File

@ -116,7 +116,7 @@ def test_softmax_4d():
[-1.5992336e-01, -5.9647644e-01, 1.2957820e+00, -1.0650631e-01, 7.0879894e-01], [-1.5992336e-01, -5.9647644e-01, 1.2957820e+00, -1.0650631e-01, 7.0879894e-01],
[4.1372257e-01, 3.6408889e-01, -6.3091749e-01, 1.0573713e+00, 1.0981073e+00], [4.1372257e-01, 3.6408889e-01, -6.3091749e-01, 1.0573713e+00, 1.0981073e+00],
[-1.9162457e-01, 3.6392561e-05, -1.8338780e-01, 1.7549801e+00, -9.3534666e-01]]]]).astype( [-1.9162457e-01, 3.6392561e-05, -1.8338780e-01, 1.7549801e+00, -9.3534666e-01]]]]).astype(
np.float32) np.float32)
dy = np.array([[[[2.98213929e-01, 3.10518718e+00, -1.64306939e-01, -7.33681679e-01, 5.23136854e-02], dy = np.array([[[[2.98213929e-01, 3.10518718e+00, -1.64306939e-01, -7.33681679e-01, 5.23136854e-02],
[-3.47142726e-01, -1.52662742e+00, 5.26977003e-01, 5.29672280e-02, -4.34386432e-01], [-3.47142726e-01, -1.52662742e+00, 5.26977003e-01, 5.29672280e-02, -4.34386432e-01],
@ -142,7 +142,7 @@ def test_softmax_4d():
[4.14457440e-01, -8.74118507e-01, -4.21902031e-01, 7.87168801e-01, -1.48280108e+00], [4.14457440e-01, -8.74118507e-01, -4.21902031e-01, 7.87168801e-01, -1.48280108e+00],
[1.42688036e+00, -2.02695489e+00, 9.26816165e-01, 9.37691629e-01, 7.85577714e-01], [1.42688036e+00, -2.02695489e+00, 9.26816165e-01, 9.37691629e-01, 7.85577714e-01],
[-6.59893751e-01, 1.14681525e-02, -5.79456389e-01, -1.65206456e+00, 4.37116653e-01]]]]).astype( [-6.59893751e-01, 1.14681525e-02, -5.79456389e-01, -1.65206456e+00, 4.37116653e-01]]]]).astype(
np.float32) np.float32)
expect_x = np.array([[[[0.21919312, 0.3903627, 0.12594244, 0.07031325, 0.19418849], expect_x = np.array([[[[0.21919312, 0.3903627, 0.12594244, 0.07031325, 0.19418849],
[0.19778392, 0.36304963, 0.16719443, 0.1646197, 0.10735231], [0.19778392, 0.36304963, 0.16719443, 0.1646197, 0.10735231],

View File

@ -19,8 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell): class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self): def __init__(self):

View File

@ -17,7 +17,6 @@ import numpy as np
import pytest import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P

View File

@ -76,19 +76,19 @@ def test_Sub():
output4 = sub(x4, y4) output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sub = Net() sub = Net()
@ -99,16 +99,16 @@ def test_Sub():
output4 = sub(x4, y4) output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output2.shape() == expect2.shape) assert output2.shape() == expect2.shape
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert (output3.shape() == expect3.shape) assert output3.shape() == expect3.shape
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert (output4.shape() == expect4.shape) assert output4.shape() == expect4.shape

View File

@ -65,16 +65,16 @@ def test_tile():
diff0 = output[0].asnumpy() - expect0 diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape) assert output[0].shape() == expect0.shape
expect1 = np.tile(input_x1, mul1) expect1 = np.tile(input_x1, mul1)
diff1 = output[1].asnumpy() - expect1 diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape) assert output[1].shape() == expect1.shape
expect2 = np.tile(input_x2, mul2) expect2 = np.tile(input_x2, mul2)
diff2 = output[2].asnumpy() - expect2 diff2 = output[2].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape) assert output[2].shape() == expect2.shape

View File

@ -20,9 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common import dtype as mstype from mindspore.common import dtype as mstype
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(device_target='GPU') context.set_context(device_target='GPU')

View File

@ -19,9 +19,6 @@ import pytest
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
@ -53,14 +50,14 @@ def test_ZerosLike():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = zeros_like(x1) output1 = zeros_like(x1)
expect1 = np.zeros_like(x1_np) expect1 = np.zeros_like(x1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
zeros_like = NetZerosLike() zeros_like = NetZerosLike()
@ -69,11 +66,11 @@ def test_ZerosLike():
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert (output0.shape() == expect0.shape) assert output0.shape() == expect0.shape
output1 = zeros_like(x1) output1 = zeros_like(x1)
expect1 = np.zeros_like(x1_np) expect1 = np.zeros_like(x1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert (output1.shape() == expect1.shape) assert output1.shape() == expect1.shape