Fixing some tiny faults about Pylint in my code(ops)

This commit is contained in:
liuwenhao4 2020-05-19 21:56:17 +08:00
parent 6966bcbf6b
commit f3f0cbaeee
112 changed files with 766 additions and 431 deletions

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -47,4 +44,4 @@ def test_net():
expect = 3.0
add = Net()
output = add(x, y)
assert (output == expect)
assert output == expect

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@ -37,7 +36,7 @@ def test_net_bool():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_int8():
@ -45,7 +44,7 @@ def test_net_int8():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_uint8():
@ -53,7 +52,7 @@ def test_net_uint8():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_int16():
@ -61,7 +60,7 @@ def test_net_int16():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_uint16():
@ -69,7 +68,7 @@ def test_net_uint16():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_int32():
@ -77,7 +76,7 @@ def test_net_int32():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_uint32():
@ -85,7 +84,7 @@ def test_net_uint32():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_int64():
@ -93,7 +92,7 @@ def test_net_int64():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_uint64():
@ -101,7 +100,7 @@ def test_net_uint64():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_float16():
@ -109,7 +108,7 @@ def test_net_float16():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_float32():
@ -117,7 +116,7 @@ def test_net_float32():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
def test_net_float64():
@ -125,4 +124,4 @@ def test_net_float64():
net = Net()
output = net(Tensor(x), -1)
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
assert np.all(output.asnumpy() == np.expand_dims(x, -1))

View File

@ -36,7 +36,7 @@ def test_net_int8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_uint8():
@ -44,7 +44,7 @@ def test_net_uint8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_int16():
@ -52,7 +52,7 @@ def test_net_int16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_uint16():
@ -60,7 +60,7 @@ def test_net_uint16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_int32():
@ -68,7 +68,7 @@ def test_net_int32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_uint32():
@ -76,7 +76,7 @@ def test_net_uint32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_int64():
@ -84,7 +84,7 @@ def test_net_int64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_uint64():
@ -92,7 +92,7 @@ def test_net_uint64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_float16():
@ -100,7 +100,7 @@ def test_net_float16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())
def test_net_float32():
@ -108,4 +108,4 @@ def test_net_float32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.flatten()))
assert np.all(output.asnumpy() == x.flatten())

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@ -37,7 +36,7 @@ def test_net_bool():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_int8():
@ -45,7 +44,7 @@ def test_net_int8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_uint8():
@ -53,7 +52,7 @@ def test_net_uint8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_int16():
@ -61,7 +60,7 @@ def test_net_int16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_uint16():
@ -69,7 +68,7 @@ def test_net_uint16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_int32():
@ -77,7 +76,7 @@ def test_net_int32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_uint32():
@ -85,7 +84,7 @@ def test_net_uint32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_int64():
@ -93,7 +92,7 @@ def test_net_int64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_uint64():
@ -101,7 +100,7 @@ def test_net_uint64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_float16():
@ -109,7 +108,7 @@ def test_net_float16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_float32():
@ -117,7 +116,7 @@ def test_net_float32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))
def test_net_float64():
@ -125,4 +124,4 @@ def test_net_float64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.isfinite(x)))
assert np.all(output.asnumpy() == np.isfinite(x))

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@ -37,7 +36,7 @@ def test_net_bool():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_int8():
@ -45,7 +44,7 @@ def test_net_int8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_uint8():
@ -53,7 +52,7 @@ def test_net_uint8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_int16():
@ -61,7 +60,7 @@ def test_net_int16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_uint16():
@ -69,7 +68,7 @@ def test_net_uint16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_int32():
@ -77,7 +76,7 @@ def test_net_int32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_uint32():
@ -85,7 +84,7 @@ def test_net_uint32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_int64():
@ -93,7 +92,7 @@ def test_net_int64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_uint64():
@ -101,7 +100,7 @@ def test_net_uint64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_float16():
@ -109,7 +108,7 @@ def test_net_float16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_float32():
@ -117,7 +116,7 @@ def test_net_float32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
def test_net_float64():
@ -125,4 +124,4 @@ def test_net_float64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))

View File

@ -36,7 +36,7 @@ def test_net_bool():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_int8():
@ -44,7 +44,7 @@ def test_net_int8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_uint8():
@ -52,7 +52,7 @@ def test_net_uint8():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_int16():
@ -60,7 +60,7 @@ def test_net_int16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_uint16():
@ -68,7 +68,7 @@ def test_net_uint16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_int32():
@ -76,7 +76,7 @@ def test_net_int32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_uint32():
@ -84,7 +84,7 @@ def test_net_uint32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_int64():
@ -92,7 +92,7 @@ def test_net_int64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_uint64():
@ -100,7 +100,7 @@ def test_net_uint64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_float16():
@ -108,7 +108,7 @@ def test_net_float16():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_float32():
@ -116,7 +116,7 @@ def test_net_float32():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())
def test_net_float64():
@ -124,4 +124,4 @@ def test_net_float64():
net = Net()
output = net(Tensor(x))
print(output.asnumpy())
assert (np.all(output.asnumpy() == x.squeeze()))
assert np.all(output.asnumpy() == x.squeeze())

View File

@ -12,12 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
@ -34,11 +31,11 @@ class Net(nn.Cell):
self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate')
'normal', [1,]), name='learning_rate')
self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum')
'normal', [1,]), name='momentum')
def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)

View File

@ -18,9 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(device_target="Ascend")

View File

@ -16,11 +16,7 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(device_target="Ascend")

View File

@ -18,7 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G

View File

@ -33,8 +33,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -18,9 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -18,9 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend")
@ -33,8 +30,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -12,11 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -34,8 +34,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -39,8 +39,8 @@ def test_image_gradients():
expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32)
net = Net()
dy, dx = net(image)
assert np.any(dx.asnumpy() - expected_dx) == False
assert np.any(dy.asnumpy() - expected_dy) == False
assert not np.any(dx.asnumpy() - expected_dx)
assert not np.any(dy.asnumpy() - expected_dy)
def test_image_gradients_multi_channel_depth():
@ -61,5 +61,5 @@ def test_image_gradients_multi_channel_depth():
net = Net()
dy, dx = net(image)
assert np.any(dx.asnumpy() - expected_dx.asnumpy()) == False
assert np.any(dy.asnumpy() - expected_dy.asnumpy()) == False
assert not np.any(dx.asnumpy() - expected_dx.asnumpy())
assert not np.any(dy.asnumpy() - expected_dy.asnumpy())

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -31,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -16,7 +16,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
@ -43,7 +42,6 @@ class Net(nn.Cell):
def test_net():
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
maxpool = Net()
output = maxpool()
print("***********output output*********")

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
@ -33,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
@ -33,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
@ -33,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -59,7 +59,7 @@ def test_net():
'''Compare Numpy with MS type is float32'''
labels_shape = (32,)
logits_shape = [32, 1001]
labels, logits, loss_np, bp_np = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
labels, logits, loss_np, _ = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
expect = loss_np
SparseSoftmaxCrossEntropyWithLogits = Net()
loss_me = SparseSoftmaxCrossEntropyWithLogits(Tensor(logits), Tensor(labels))

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -34,7 +34,7 @@ class Adam:
self.epsilon = epsilon
def train_mindspore_impl(self):
input = Tensor(np.random.randn(self.batch_num, self.input_channels).astype(np.float32))
input_ = Tensor(np.random.randn(self.batch_num, self.input_channels).astype(np.float32))
weight_np = Tensor(np.random.randn(self.output_channels, self.input_channels).astype(np.float32))
bias = Tensor(np.random.randn(self.output_channels).astype(np.float32))
@ -60,9 +60,9 @@ class Adam:
train_network.set_train()
print('MS Initialized!')
for i in range(self.epoch):
train_network(input, label)
output = ms_dense(input)
for _ in range(self.epoch):
train_network(input_, label)
output = ms_dense(input_)
print("===============output=================", output)
return output.asnumpy()

View File

@ -12,12 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
@ -32,11 +29,11 @@ class Net(nn.Cell):
self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate')
'normal', [1,]), name='learning_rate')
self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum')
'normal', [1,]), name='momentum')
def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import context
from mindspore.common.tensor import Tensor
@ -38,7 +37,7 @@ def tf_me_batchmatmul(inputa, inputb):
net = Net()
net.set_train()
model = Model(net)
out_me = model.predict(Tensor(inputa), Tensor(inputb))
model.predict(Tensor(inputa), Tensor(inputb))
def test_batchmatmul_normal_shape1():

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -34,8 +34,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
@ -55,4 +55,4 @@ def test_net():
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
net = Grad(Net())
output = net(Tensor(x), Tensor(sens))
net(Tensor(x), Tensor(sens))

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -18,9 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -17,13 +17,10 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore import log as logger
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
from mindspore import log as logger
class Net(nn.Cell):

View File

@ -12,32 +12,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import math
import numpy as np
import pytest
from mindspore import context
from mindspore import log as logger
from mindspore.common.tensor import Tensor
from mindspore.nn import GELU, Cell
from mindspore.ops import operations as P
from mindspore.nn import GELU
from mindspore.train.model import Model
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def gelu_forward_me_impl(input):
def gelu_forward_me_impl(input_):
n = GELU()
n.set_train()
m = Model(n)
out = m.predict(input)
out = m.predict(input_)
return out.asnumpy()
def gelu_forward_cmp(input_shape, data_type=np.float32):
input_np = np.random.randn(*input_shape).astype(data_type)
input_me = Tensor(input_np)
out_me = gelu_forward_me_impl(input_me)
gelu_forward_me_impl(input_me)
@pytest.mark.skip(reason="scalar")

View File

@ -12,11 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import math
import numpy as np
import pytest
import mindspore as ms
from mindspore import context
from mindspore import log as logger
from mindspore.common.tensor import Tensor
@ -33,15 +30,15 @@ class Grad(Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
def gelu_backward_me_impl(input, output_grad):
def gelu_backward_me_impl(input_, output_grad):
n = GELU()
grad_with_sense = Grad(n)
grad_with_sense.set_train()
input_grad = grad_with_sense(input, output_grad)
input_grad = grad_with_sense(input_, output_grad)
return input_grad.asnumpy()
@ -86,7 +83,7 @@ def gelu_backward_me_large_in_impl(x1, x2, output_grad):
grad_with_sense = GradLargeIn(n)
grad_with_sense.set_train()
input_grad = grad_with_sense(x1, x2, output_grad)
return input_grad[0].asnumpy(), input_grad[1].asnumpy(),
return input_grad[0].asnumpy(), input_grad[1].asnumpy()
def test_grad_gelu_input_10240_1024():

View File

@ -30,8 +30,8 @@ class Net(Cell):
super(Net, self).__init__()
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta)
def construct(self, input):
x = self.layernorm(input)
def construct(self, input_):
x = self.layernorm(input_)
return x

View File

@ -30,8 +30,8 @@ class Grad(Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network
def construct(self, input, output_grad, ):
gout = self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad,):
gout = self.grad(self.network)(input_, output_grad)
return gout
@ -40,8 +40,8 @@ class Net(Cell):
super(Net, self).__init__()
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta)
def construct(self, input):
x = self.layernorm(input)
def construct(self, input_):
x = self.layernorm(input_)
return x

View File

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn

View File

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn

View File

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -39,9 +39,9 @@ def me_max(inputa, inputb, dtype=ms.float32):
net.set_train()
model = Model(net)
print(type(inputa))
if isinstance(inputa, np.ndarray) == True:
if isinstance(inputa, np.ndarray):
inputa = Tensor(inputa)
if isinstance(inputb, np.ndarray) == True:
if isinstance(inputb, np.ndarray):
inputb = Tensor(inputb)
out = model.predict(inputa, inputb)
print(out)

View File

@ -46,12 +46,12 @@ class GradWrap(Cell):
def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True:
if isinstance(inputA_np, np.ndarray):
inputA_me = Tensor(inputA_me)
inputB_me = inputB_np
if isinstance(inputB_np, np.ndarray) == True:
if isinstance(inputB_np, np.ndarray):
inputB_me = Tensor(inputB_np)
if grad == None:
if grad is None:
grad = np.random.randn(2).astype(np.float32)
print("----inputA---")
print(inputA_np)

View File

@ -31,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):

View File

@ -18,9 +18,6 @@ import mindspore as ms
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.train.model import Model
@ -42,9 +39,9 @@ def me_min(inputa, inputb, dtype=ms.float32):
net.set_train()
model = Model(net)
print(type(inputa))
if isinstance(inputa, np.ndarray) == True:
if isinstance(inputa, np.ndarray):
inputa = Tensor(inputa)
if isinstance(inputb, np.ndarray) == True:
if isinstance(inputb, np.ndarray):
inputb = Tensor(inputb)
out = model.predict(inputa, inputb)
print(out)

View File

@ -15,7 +15,6 @@
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Cell
from mindspore.ops import composite as C
@ -47,11 +46,11 @@ class GradWrap(Cell):
def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True:
if isinstance(inputA_np, np.ndarray):
inputA_me = Tensor(inputA_me)
inputB_me = inputB_np
if isinstance(inputB_np, np.ndarray) == True:
if isinstance(inputB_np, np.ndarray):
inputB_me = Tensor(inputB_np)
if grad is None:

View File

@ -12,11 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P

View File

@ -16,11 +16,7 @@ import numpy as np
import mindspore as ms
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.train.model import Model
@ -33,31 +29,29 @@ class PowMe(Cell):
super(PowMe, self).__init__()
self.pow = P.Pow()
def construct(self, input, exp):
return self.pow(input, exp)
def construct(self, input_, exp):
return self.pow(input_, exp)
def pow_forward_me_impl(input, exp):
def pow_forward_me_impl(input_, exp):
n = PowMe()
n.set_train()
m = Model(n)
out = m.predict(input, exp)
out = m.predict(input_, exp)
return out.asnumpy()
def pow_forward_cmp(input_shape, exp_shape):
if len(input_shape) == 0:
if not input_shape:
input_np = np.absolute(np.random.randn())
else:
input_np = np.absolute(np.random.randn(*input_shape).astype(np.float32))
input_tf = input_np
input_me = Tensor(input_np, dtype=ms.float32)
if len(exp_shape) == 0:
if not exp_shape:
exp_np = np.absolute(np.random.randn())
else:
exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32))
exp_tf = exp_np
exp_me = Tensor(exp_np, dtype=ms.float32)
out_me = pow_forward_me_impl(input_me, exp_me)

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation

View File

@ -18,8 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
@ -33,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input):
return self.grad(self.network)(input)
def construct(self, input_):
return self.grad(self.network)(input_)
class Net(nn.Cell):

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -16,11 +16,7 @@ import numpy as np
import mindspore as ms
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.train.model import Model
@ -41,11 +37,11 @@ def me_select(cond, inputa, inputb, dtype=ms.float32):
net = Select(dtype)
net.set_train()
model = Model(net)
if isinstance(inputa, np.ndarray) == True:
if isinstance(inputa, np.ndarray):
inputa = Tensor(inputa)
if isinstance(inputb, np.ndarray) == True:
if isinstance(inputb, np.ndarray):
inputb = Tensor(inputb)
if isinstance(cond, np.bool_) == True:
if isinstance(cond, np.bool_):
cond = np.array(cond)
out = model.predict(Tensor(cond), inputa, inputb)

View File

@ -18,7 +18,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -37,5 +37,5 @@ def test_net():
features = np.random.randn(32, 1001).astype(np.float16)
labels = np.random.randn(32, 1001).astype(np.float16)
SoftmaxCrossEntropyWithLogits = Net()
output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
# print(output.asnumpy())

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.ops.operations as P
@ -32,8 +31,8 @@ class Net(Cell):
self.end = end
self.stride = stride
def construct(self, input):
x = self.stridedslice(input, self.begin, self.end, self.stride)
def construct(self, input_):
x = self.stridedslice(input_, self.begin, self.end, self.stride)
return x
@ -47,17 +46,17 @@ def me_stridedslice(input1, begin, end, stride):
def test_stridedslice_input_2d():
input = np.random.randn(5, 5).astype(np.int32)
input_ = np.random.randn(5, 5).astype(np.int32)
begin = (0, 0)
end = (2, 2)
stride = (1, 1)
me_stridedslice(input, begin, end, stride)
me_stridedslice(input_, begin, end, stride)
def test_stridedslice_input_3d():
input = np.random.randn(5, 5, 5).astype(np.float32)
input_ = np.random.randn(5, 5, 5).astype(np.float32)
begin = (0, 0, 0)
end = (3, 3, 3)
stride = (1, 1, 1)
me_stridedslice(input, begin, end, stride)
me_stridedslice(input_, begin, end, stride)

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import context
from mindspore.common.tensor import Tensor
@ -30,8 +29,8 @@ class Grad(Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network
def construct(self, input, output_grad):
gout = self.grad(self.network)(input, output_grad)
def construct(self, input_, output_grad):
gout = self.grad(self.network)(input_, output_grad)
return gout
@ -43,13 +42,13 @@ class Net(Cell):
self.end = end
self.stride = stride
def construct(self, input):
x = self.stridedslice(input, self.begin, self.end, self.stride)
def construct(self, input_):
x = self.stridedslice(input_, self.begin, self.end, self.stride)
return x
def me_stridedslice(input, begin, end, stride, gradients):
input_me = Tensor(input)
def me_stridedslice(input_, begin, end, stride, gradients):
input_me = Tensor(input_)
out_grad_me = Tensor(gradients)
net_me = Grad(Net(begin, end, stride))
net_me.set_train()
@ -58,9 +57,9 @@ def me_stridedslice(input, begin, end, stride, gradients):
def test_grad_stridedslice_1d():
input = np.random.randn(2).astype(np.float32)
input_ = np.random.randn(2).astype(np.float32)
begin = (0,)
end = (2,)
stride = (1,)
gradients = np.random.randn(2).astype(np.float32)
me_stridedslice(input, begin, end, stride, gradients)
me_stridedslice(input_, begin, end, stride, gradients)

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
from mindspore.train.model import Model

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -17,9 +17,6 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -29,14 +29,14 @@ class Net(nn.Cell):
self.transpose = P.Transpose()
self.perm = perm_in
def construct(self, input):
x = self.transpose(input, self.perm)
def construct(self, input_):
x = self.transpose(input_, self.perm)
return x
def ms_transpose(input, perm_in):
def ms_transpose(input_, perm_in):
context.set_context(mode=context.GRAPH_MODE)
input_me = Tensor(input)
input_me = Tensor(input_)
net = Net(perm_in)
net.set_train()
model = Model(net)
@ -47,6 +47,6 @@ def ms_transpose(input, perm_in):
def test_net():
input = np.random.randn(8, 24, 1, 1).astype(np.float16)
input_ = np.random.randn(8, 24, 1, 1).astype(np.float16)
perm = (0, 2, 3, 1)
ms_transpose(input, perm)
ms_transpose(input_, perm)

View File

@ -33,19 +33,19 @@ class Net(nn.Cell):
return self.seg_sum(x, segment_ids, self.num_segments)
def me_un_seg_sum(input, indices, num_segments):
def me_un_seg_sum(input_, indices, num_segments):
context.set_context(mode=context.GRAPH_MODE)
net = Net(num_segments)
net.set_train()
model = Model(net)
out = model.predict(Tensor(input), Tensor(indices))
out = model.predict(Tensor(input_), Tensor(indices))
return out.asnumpy()
def comapre_un_seg_sum(shape, indices, num_segments, dtype):
input = np.random.randn(*shape).astype(dtype)
input_ = np.random.randn(*shape).astype(dtype)
indices_me = np.array(indices).astype(np.int32)
out_me = me_un_seg_sum(input, indices_me, num_segments)
out_me = me_un_seg_sum(input_, indices_me, num_segments)
print("-------------ms------------------")
print(out_me)

View File

@ -87,8 +87,8 @@ if __name__ == '__main__':
super(dataiter, self).__init__()
def construct(self):
input, label = get_next()
return tadd(input)
input_, _ = get_next()
return tadd(input_)
net = dataiter()

View File

@ -18,7 +18,6 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')

View File

@ -21,7 +21,6 @@ import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')

View File

@ -57,7 +57,7 @@ def test_momentum():
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
train_network.set_train()
losses = []
for i in range(epoch):
for _ in range(epoch):
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
label = Tensor(np.array([0]).astype(np.int32))
loss = train_network(data, label)
@ -70,6 +70,5 @@ def test_momentum():
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
error = np.ones(shape=[1, 10]) * 1.0e-6
return losses

View File

@ -20,7 +20,6 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(device_target='CPU')

View File

@ -21,7 +21,6 @@ import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
@ -48,7 +47,7 @@ class NetReluGrad(nn.Cell):
def test_relu_grad():
relu_grad = NetReluGrad()
output = relu_grad()
expect = np.array([[[[0, 0, 1, ], [0, 0, 0, ], [1, 1, 0.]]]]).astype(np.float32)
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)

View File

@ -44,8 +44,8 @@ class NetRelu(nn.Cell):
def test_relu():
relu = NetRelu()
output = relu()
expect = np.array([[[[0, 1, 10, ],
[1, 0, 1, ],
expect = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32)
print(output)
assert (output.asnumpy() == expect).all()

View File

@ -0,0 +1,519 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import te.lang.cce
from te import tvm
from te.platform import CUBE_MKN
from topi import generic
from topi.cce import util
from topi.cce.util import is_v200_version
# pylint: disable=R0912,R0913,R0914,R0915,E1101
# the dim of shape in conv must be 4
PAD_SHAPE_DIM = 2
NONETYPE = type(None)
@util.check_input_type((list, tuple), (list, tuple), str, str, str, (list, int), (list, int),
int, int, (list, tuple), (list, tuple),
str, str, str,
str, str, str,
str, bool, str)
def conv_layer_cce_para_check(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw,
strideh, stridew, quantize_config, scale_sqrt,
scale_q_dtype, offset_q_dtype, scale_dq_dtype,
scale_rq_dtype, offset_rq_dtype, offset_w_dtype,
offset_pad_dtype, bias, kernel_name):
# conv shape check
util.check_kernel_name(kernel_name)
# conv data type check
util.check_dtype_rule(in_dtype, ['float16', 'int8', 'uint8'])
util.check_dtype_rule(w_dtype, ['float16', 'int8', 'uint8'])
res_dtype_list = ['float16', 'int8', 'uint8']
if is_v200_version():
res_dtype_list.append('int32')
util.check_dtype_rule(res_dtype, res_dtype_list)
util.check_dtype_rule(scale_q_dtype, ['float16'])
util.check_dtype_rule(offset_q_dtype, ['float16'])
util.check_dtype_rule(scale_dq_dtype, ['float16'])
util.check_dtype_rule(scale_rq_dtype, ['float16'])
util.check_dtype_rule(offset_rq_dtype, ['float16'])
util.check_dtype_rule(offset_w_dtype, ['int32'])
util.check_dtype_rule(offset_pad_dtype, ['uint8'])
if not isinstance(bias, bool):
raise RuntimeError("bias dtype should be bool.")
if quantize_config[0] == 0:
if is_v200_version():
util.check_dtype_rule(in_dtype, ('int8',))
util.check_dtype_rule(w_dtype, ('int8',))
util.check_dtype_rule(res_dtype, ('int32',))
else:
util.check_dtype_rule(in_dtype, ['float16'])
util.check_dtype_rule(w_dtype, ['float16'])
util.check_dtype_rule(res_dtype, ['float16'])
if quantize_config[0] == 1:
util.check_dtype_rule(w_dtype, ['int8'])
if quantize_config[1] == 0:
util.check_dtype_rule(in_dtype, ['int8', 'float16'])
util.check_dtype_rule(res_dtype, ['int8', 'float16'])
elif quantize_config[1] == 1:
util.check_dtype_rule(in_dtype, ['uint8', 'float16'])
util.check_dtype_rule(res_dtype, ['uint8', 'float16'])
elif quantize_config[1] == 2:
raise RuntimeError("All Offset mode quantize not support.")
else:
raise RuntimeError("Invalid quantize algorithm.")
# quantize switch on
if quantize_config[0] == 1:
# quantize -> DeQuantize dataflow
if in_dtype == 'float16' and w_dtype == 'int8' and res_dtype == 'float16':
pass
# DeQuantize dataflow
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and
res_dtype == 'float16'):
pass
# quantize -> ReQuantize dataflow
elif (in_dtype == 'float16' and w_dtype == 'int8' and res_dtype in
['int8', 'uint8']):
pass
# ReQuantize dataflow
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and res_dtype in
['int8', 'uint8']):
pass
else:
raise RuntimeError("Not support in/out data type for quantize.")
if quantize_config not in ([1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 1]):
raise RuntimeError("Invalid Quantize Config.")
if scale_sqrt not in ([0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1],
[1, 0, 1], [0, 1, 1], [1, 1, 1]):
raise RuntimeError("Invalid Quantize Config.")
# quantize switch off
elif quantize_config[0] == 0:
if quantize_config != [0, 0, 0]:
raise RuntimeError("Invalid Quantize Config.")
if scale_sqrt != [0, 0, 0]:
raise RuntimeError("Invalid Quantize Config.")
else:
raise RuntimeError("Invalid Quantize Config.")
if isinstance(padh, list):
if len(padh) != PAD_SHAPE_DIM:
raise RuntimeError("Dimension must be %d when padh is a list." % PAD_SHAPE_DIM)
pad_top = padh[0]
pad_bottom = padh[1]
else:
pad_top = padh
pad_bottom = padh
if isinstance(padw, list):
if len(padw) != PAD_SHAPE_DIM:
raise RuntimeError("Dimension must be %d when padw is a list." % PAD_SHAPE_DIM)
pad_left = padw[0]
pad_right = padw[1]
else:
pad_left = padw
pad_right = padw
shape_in, shape_w = te.lang.cce.check_conv_shape(shape_in, shape_w, pad_top, pad_bottom, \
pad_left, pad_right, strideh, \
stridew, in_dtype, w_dtype, res_dtype)
return shape_in, shape_w
@util.check_input_type((list, tuple), (list, tuple), str, str, str, \
(list, int), (list, int), int, int,
(list, NONETYPE), (list, NONETYPE),
str, str, str,
str, str, str, str,
bool, str, bool, bool)
def conv_layer_cce(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw, strideh, stridew,
quantize_config=None, scale_sqrt=None,
scale_q_dtype='float16', offset_q_dtype='float16', scale_dq_dtype='float16',
scale_rq_dtype='float16', offset_rq_dtype='float16', offset_w_dtype='int32',
offset_pad_dtype='uint8', bias=False, kernel_name="cce_conv", need_build=False,
need_print=False):
"""
Parameters
----------
shape_in : shape of data_in
shape_w : shape of filter
in_dtype : the feature map data type
w_dtype : the weight data type
res_dtype : the result data type
padh: the padding shape in H
padw: the padding shape in weight
strideh: the stride value in H
stridew: the stride value in weight
quantize_config: quantize config table, default [0, 0, 0]
quantize_config[0] - quantize function switch
0: quantize off
1: quantize on
quantize_config[1] - quantize_algorithm
0: non offset
1: half offset
2: all offset ( Not supported now )
quantize_config[2] - QuantizeScaleType (for Dequantize/Requantize, quantize always scalar)
0: scalar
1: vector
scale_sqrt: scale mode
scale_sqrt[0] - Quantize scale mode
0: non sqrt
1: sqrt
scale_sqrt[1] - DeQuantize scale mode
0: non sqrt
1: sqrt
scale_sqrt[2] - ReQuantize scale mode
0: non sqrt
1: sqrt
scale_q_dtype: Quantize scale data type, default 'float16'
offset_q_dtype: Quantize offset data type, default 'float16'
scale_dq_dtype: DeQuantize scale data type, default 'float16'
scale_rq_dtype: ReQuantize scale data type, default 'float16'
offset_rq_dtype: ReQuantize offset data type, default 'float16'
offset_w_dtype: weight offset data type, default 'int32'
offset_pad_dtype: Quantize Cube offset data type, default 'uint8'
bias: the tag for bias or not
kernel_name : cce kernel name, default value is "cce_conv"
need_build : if need to build CCEC kernel, default value is False
need_print : if need to print the ir, default value is False
Returns
-------
wrapped_tensor
"""
# for pylint, otherwise "Dangerous default value [] as argument"
if quantize_config is None:
quantize_config = [0, 0, 0]
if scale_sqrt is None:
scale_sqrt = [0, 0, 0]
in_dtype = in_dtype.lower()
w_dtype = w_dtype.lower()
res_dtype = res_dtype.lower()
scale_q_dtype = scale_q_dtype.lower()
offset_q_dtype = offset_q_dtype.lower()
scale_dq_dtype = scale_dq_dtype.lower()
scale_rq_dtype = scale_rq_dtype.lower()
offset_rq_dtype = offset_rq_dtype.lower()
offset_w_dtype = offset_w_dtype.lower()
offset_pad_dtype = offset_pad_dtype.lower()
mad_dtype = 'float32'
if w_dtype == 'int8':
mad_dtype = 'int32'
shape_in = list(shape_in)
shape_w = list(shape_w)
shape_in, shape_w = conv_layer_cce_para_check(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw, strideh,
stridew,
quantize_config, scale_sqrt, scale_q_dtype, offset_q_dtype,
scale_dq_dtype,
scale_rq_dtype, offset_rq_dtype, offset_w_dtype, offset_pad_dtype,
bias, kernel_name)
# quantize switch on
if quantize_config[0] == 1:
quantize_turn_on = True
# quantize -> DeQuantize dataflow
if in_dtype == 'float16' and w_dtype == 'int8' and res_dtype == 'float16':
is_quantize = True
is_dequantize = True
is_requantize = False
# DeQuantize dataflow
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and
res_dtype == 'float16'):
is_quantize = False
is_dequantize = True
is_requantize = False
# quantize -> ReQuantize dataflow
elif (in_dtype == 'float16' and w_dtype == 'int8' and res_dtype in
['int8', 'uint8']):
is_quantize = True
is_dequantize = False
is_requantize = True
# ReQuantize dataflow
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and res_dtype in
['int8', 'uint8']):
is_quantize = False
is_dequantize = False
is_requantize = True
else:
raise RuntimeError("Not support in/out data type for quantize.")
# quantize switch off
elif quantize_config[0] == 0:
quantize_turn_on = False
is_quantize = False
is_dequantize = False
is_requantize = False
if quantize_config != [0, 0, 0]:
raise RuntimeError("Invalid Quantize Config.")
if scale_sqrt != [0, 0, 0]:
raise RuntimeError("Invalid Quantize Config.")
else:
raise RuntimeError("Invalid Quantize Config.")
batch_size = shape_in[0]
in_channel = shape_in[1]
feature_map_h = shape_in[2]
feature_map_w = shape_in[3]
block_size_k = CUBE_MKN[in_dtype]['mac'][1]
fmap_shape_nc1hwc0 = (batch_size, (in_channel + block_size_k - 1) // block_size_k,
feature_map_h, feature_map_w, block_size_k)
out_channel = shape_w[0]
in_channel_weight = shape_w[1]
filter_h = shape_w[2]
filter_w = shape_w[3]
block_size_k = CUBE_MKN[w_dtype]['mac'][1]
block_size_n = CUBE_MKN[w_dtype]['mac'][2]
filter_shape_frac_z = (in_channel_weight * filter_h * filter_w // block_size_k,
out_channel // block_size_n, block_size_n, block_size_k)
with tvm.target.cce():
data = tvm.placeholder(
fmap_shape_nc1hwc0, name='Fmap', dtype=in_dtype)
weight = tvm.placeholder(
filter_shape_frac_z, name='Filter', dtype=w_dtype)
bias_tensor = None
scale_q = None
scale_dq = None
scale_rq = None
offset_pad = None
offset_rq = None
offset_q = None
scale_drq = None
# bias or fusion_bias(half offset)
if bias or (quantize_config[1] == 1 and quantize_turn_on):
bias_tensor = tvm.placeholder(
(out_channel,), name='bias_tensor', \
dtype="int32" if quantize_turn_on else res_dtype)
# quantize on
if quantize_turn_on:
quantize_algorithm = quantize_config[1]
if is_quantize:
scale_q = tvm.placeholder(
(CUBE_MKN[scale_q_dtype]['mac'][1],), name='scaleQ', dtype=scale_q_dtype)
if quantize_algorithm == 1:
offset_q = tvm.placeholder(
(CUBE_MKN[offset_q_dtype]['mac'][1],), name='offsetQ', dtype=offset_q_dtype)
if is_dequantize:
scale_dq_shape = (CUBE_MKN[scale_dq_dtype]['mac'][1],) if quantize_config[2] == 0 \
else (out_channel,)
scale_dq = tvm.placeholder(
scale_dq_shape, name='scaleDq', dtype=scale_dq_dtype)
if is_requantize:
scale_rq_shape = (CUBE_MKN[scale_rq_dtype]['mac'][1],) if quantize_config[2] == 0 \
else (out_channel,)
scale_rq = tvm.placeholder(
scale_rq_shape, name='scaleRq', dtype=scale_rq_dtype)
if quantize_algorithm == 1:
offset_rq_shape = (CUBE_MKN[offset_rq_dtype]['mac'][1],)
offset_rq = tvm.placeholder(
offset_rq_shape, name='offsetRq', dtype=offset_rq_dtype)
# need offset_pad , for half offset
if quantize_algorithm == 1:
offset_pad = tvm.placeholder(
(CUBE_MKN[offset_pad_dtype]['mac'][1],), name='offset_pad',
dtype=offset_pad_dtype)
if quantize_algorithm == 0:
if is_quantize:
if is_dequantize:
scale_drq = scale_dq
else:
scale_drq = scale_rq
conv_res = te.lang.cce.conv(
data, weight, {"bias_tensor": bias_tensor,
"scale_q": scale_q,
"offset_q": offset_q,
"scale_drq": scale_drq,
"offset_pad": offset_pad,
"offset_rq": offset_rq,
"quantize_config": quantize_config,
"is_quantize": is_quantize,
"is_dequantize": is_dequantize,
"is_requantize": is_requantize,
"scale_sqrt": scale_sqrt,
"pad_h": padh, "pad_w": padw,
"stride_h": strideh, "stride_w": stridew,
"filter_h": filter_h, "filter_w": filter_w,
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
dsl_flag=False)
if bias:
tensor_list = [data, weight, bias_tensor, scale_q,
scale_drq, conv_res]
else:
tensor_list = [data, weight, scale_q,
scale_drq, conv_res]
else:
if is_dequantize:
scale_drq = scale_dq
else:
scale_drq = scale_rq
conv_res = te.lang.cce.conv(
data, weight, {"bias_tensor": bias_tensor,
"scale_q": scale_q,
"offset_q": offset_q,
"scale_drq": scale_drq,
"offset_pad": offset_pad,
"offset_rq": offset_rq,
"quantize_config": quantize_config,
"is_quantize": is_quantize,
"is_dequantize": is_dequantize,
"is_requantize": is_requantize,
"scale_sqrt": scale_sqrt,
"pad_h": padh, "pad_w": padw,
"stride_h": strideh, "stride_w": stridew,
"filter_h": filter_h, "filter_w": filter_w,
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
dsl_flag=False)
if bias:
tensor_list = [data, weight, bias_tensor,
scale_drq, conv_res]
else:
tensor_list = [data, weight,
scale_drq, conv_res]
# half offset
else:
if is_quantize:
if is_dequantize:
scale_drq = scale_dq
else:
scale_drq = scale_rq
conv_res = te.lang.cce.conv(
data, weight, {"bias_tensor": bias_tensor,
"scale_q": scale_q,
"offset_q": offset_q,
"scale_drq": scale_drq,
"offset_pad": offset_pad,
"offset_rq": offset_rq,
"quantize_config": quantize_config,
"is_quantize": is_quantize,
"is_dequantize": is_dequantize,
"is_requantize": is_requantize,
"scale_sqrt": scale_sqrt,
"pad_h": padh, "pad_w": padw,
"stride_h": strideh, "stride_w": stridew,
"filter_h": filter_h, "filter_w": filter_w,
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
dsl_flag=False)
if is_dequantize:
tensor_list = [data, weight, bias_tensor, scale_q, offset_q,
scale_drq, offset_pad, conv_res]
else:
tensor_list = [data, weight, bias_tensor, scale_q, offset_q,
scale_drq, offset_rq, offset_pad, conv_res]
else:
if is_dequantize:
scale_drq = scale_dq
else:
scale_drq = scale_rq
conv_res = te.lang.cce.conv(
data, weight, {"bias_tensor": bias_tensor,
"scale_q": scale_q,
"offset_q": offset_q,
"scale_drq": scale_drq,
"offset_pad": offset_pad,
"offset_rq": offset_rq,
"quantize_config": quantize_config,
"is_quantize": is_quantize,
"is_dequantize": is_dequantize,
"is_requantize": is_requantize,
"scale_sqrt": scale_sqrt,
"pad_h": padh, "pad_w": padw,
"stride_h": strideh, "stride_w": stridew,
"filter_h": filter_h, "filter_w": filter_w,
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
dsl_flag=False)
if is_dequantize:
tensor_list = [data, weight, bias_tensor,
scale_drq, offset_pad, conv_res]
else:
tensor_list = [data, weight, bias_tensor,
scale_drq, offset_rq, offset_pad, conv_res]
else:
conv_res = te.lang.cce.conv(
data, weight, {"bias_tensor": bias_tensor,
"scale_q": scale_q,
"offset_q": offset_q,
"scale_drq": scale_drq,
"offset_pad": offset_pad,
"offset_rq": offset_rq,
"quantize_config": quantize_config,
"is_quantize": is_quantize,
"is_dequantize": is_dequantize,
"is_requantize": is_requantize,
"scale_sqrt": scale_sqrt,
"pad_h": padh, "pad_w": padw,
"stride_h": strideh, "stride_w": stridew,
"filter_h": filter_h, "filter_w": filter_w,
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
dsl_flag=False)
if bias:
tensor_list = [data, weight, bias_tensor, conv_res]
else:
tensor_list = [data, weight, conv_res]
sch = generic.auto_schedule(conv_res)
config = {
"print_ir": need_print,
"need_build": need_build,
"name": kernel_name,
"tensor_list": tensor_list
}
te.lang.cce.cce_build_code(sch, config)

View File

@ -20,12 +20,12 @@ from mindspore.ops import operations as P
# y = x^2
class CusSquare(PrimitiveWithInfer):
"""CusSquare definition"""
from square_impl import CusSquareImpl
@prim_attr_register
def __init__(self):
"""init CusSquare"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
from square_impl import CusSquareImpl
def vm_impl(self, x):
x = x.asnumpy()

View File

@ -119,7 +119,7 @@ def test_4d_transpose_ab():
[[5612, 5810, 6008, 6206]]]]
assert (output.asnumpy() == expect).all()
def test_4d_fp16():
def test_4D_fp16():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)

View File

@ -68,10 +68,11 @@ def test_batchnrom_fold2():
current_step = np.array([0]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean),
Tensor(running_std), Tensor(running_mean), Tensor(current_step))
expect = ((x + beta.reshape(-1, 1, 1) -
(gamma * running_mean / running_std).reshape(-1, 1, 1) if current_step >= freeze_bn else
x * (running_std / batch_std).reshape(-1, 1, 1) +
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
expect = (x + beta.reshape(-1, 1,
1) - (gamma * running_mean / running_std).reshape(-1, 1,
1) if current_step >= freeze_bn else
x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
1))
error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)
@ -80,9 +81,11 @@ def test_batchnrom_fold2():
current_step = np.array([100000]).astype('int32')
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std),
Tensor(running_mean), Tensor(current_step))
expect = ((x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, 1)
if current_step >= freeze_bn else x * (batch_std / running_std).reshape(-1, 1, 1) +
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
expect = (x + beta.reshape(-1, 1,
1) - (gamma * running_mean / running_std).reshape(-1, 1,
1) if current_step >= freeze_bn else
x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
1))
error = np.ones(shape=expect.shape) * 1.0e-6
diff = output.asnumpy() - expect
assert np.all(diff < error)

View File

@ -38,8 +38,8 @@ class Net(nn.Cell):
def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std):
n = x.shape[0] * x.shape[2] * x.shape[3]
dx = (d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) *
(x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n)
dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * (
x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n
return dx

View File

@ -172,8 +172,8 @@ class Grad(nn.Cell):
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network
def construct(self, inputs, bias, dy):
return self.grad(self.network)(inputs, bias, dy)
def construct(self, input_, bias, dy):
return self.grad(self.network)(input_, bias, dy)
@pytest.mark.level0

View File

@ -783,10 +783,6 @@ def test_grad():
bidirectional = True
dropout = 0.0
num_directions = 1
if bidirectional:
num_directions = 2
net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout))
dy = np.array([[[-3.5471e-01, 7.0540e-01, -7.5945e-01, -1.2322e+00],
@ -804,7 +800,7 @@ def test_grad():
[[-1.6032e+00, -1.8818e-01, 7.0441e-01, -2.8765e+00],
[1.0065e-01, 9.2045e-01, 2.7426e-01, 2.6196e-01]]]).astype(np.float32)
dx, dh, dc, dw = net(Tensor(dy))
dx, dh, dc, _ = net(Tensor(dy))
expect_dx = np.array([[[0.01697153, -0.0096909, 0.01306139, 0.00863109, -0.00122794, -0.00746152, -0.00879683,
0.00643571, 0.0015958, 0.01480642],
[0.05794962, -0.02326604, 0.01862703, 0.02053947, 0.02607713, -0.01278067, 0.04250786,
@ -964,12 +960,8 @@ def test_lstm_dropout():
bidirectional = False
dropout = 1.0
num_directions = 1
if bidirectional:
num_directions = 2
net = LstmNetWithDropout(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
y, h, c, _, _ = net()
y, _, _, _, _ = net()
expect_y = np.array([[[-0.45210335, -0.0844336],
[-0.14677924, 0.07140275]],

View File

@ -178,7 +178,8 @@ def test_broadcast():
expect_dx2 = np.array([[[[0., 4.250458, 2.5030296, 3.623167, 6.4171505, 7.2115746]],
[[0., 4.367449, 2.803152, 2.5352, 0., 0.]],
[[0.7087075, 0., 2.040332, 2.1372325, 0., 2.9222295]],
[[1.0278877, 5.247942, 2.6855955, 5.494814, 3.5657988, 0.66265094]]]]).astype(np.float32)
[[1.0278877, 5.247942, 2.6855955, 5.494814, 3.5657988,
0.66265094]]]]).astype(np.float32)
net = Grad(MinimumNet())
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))

View File

@ -182,88 +182,88 @@ def test_ReduceSum():
diff0 = abs(output[0].asnumpy() - expect0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
assert output[0].shape() == expect0.shape
expect1 = np.sum(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
assert output[1].shape() == expect1.shape
expect2 = np.sum(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
assert output[2].shape() == expect2.shape
expect3 = np.sum(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert (output[3].shape() == expect3.shape)
assert output[3].shape() == expect3.shape
expect4 = np.sum(x4, axis=np_axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert (output[4].shape() == expect4.shape)
assert output[4].shape() == expect4.shape
expect5 = np.sum(x5, axis=np_axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5)
assert (output[5].shape() == expect5.shape)
assert output[5].shape() == expect5.shape
expect6 = np.sum(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6)
assert (output[6].shape() == expect6.shape)
assert output[6].shape() == expect6.shape
expect7 = np.sum(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7)
error7 = np.ones(shape=expect7.shape) * 1.0e-5
assert np.all(diff7 < error7)
assert (output[7].shape() == expect7.shape)
assert output[7].shape() == expect7.shape
expect8 = np.sum(x8, axis=axis8, keepdims=keep_dims8)
diff8 = abs(output[8].asnumpy() - expect8)
error8 = np.ones(shape=expect8.shape) * 1.0e-5
assert np.all(diff8 < error8)
assert (output[8].shape() == expect8.shape)
assert output[8].shape() == expect8.shape
expect9 = np.sum(x9, axis=axis9, keepdims=keep_dims9)
diff9 = abs(output[9].asnumpy() - expect9)
error9 = np.ones(shape=expect9.shape) * 1.0e-5
assert np.all(diff9 < error9)
assert (output[9].shape() == expect9.shape)
assert output[9].shape() == expect9.shape
expect10 = np.sum(x10, axis=axis10, keepdims=keep_dims10)
diff10 = abs(output[10].asnumpy() - expect10)
error10 = np.ones(shape=expect10.shape) * 1.0e-5
assert np.all(diff10 < error10)
assert (output[10].shape() == expect10.shape)
assert output[10].shape() == expect10.shape
expect11 = np.sum(x11, axis=axis11, keepdims=keep_dims11)
diff11 = abs(output[11].asnumpy() - expect11)
error11 = np.ones(shape=expect11.shape) * 1.0e-5
assert np.all(diff11 < error11)
assert (output[11].shape() == expect11.shape)
assert output[11].shape() == expect11.shape
expect12 = np.sum(x12, axis=axis12, keepdims=keep_dims12)
diff12 = abs(output[12].asnumpy() - expect12)
error12 = np.ones(shape=expect12.shape) * 1.0e-5
assert np.all(diff12 < error12)
assert (output[12].shape() == expect12.shape)
assert output[12].shape() == expect12.shape
expect13 = np.sum(x13, axis=axis13, keepdims=keep_dims13)
diff13 = abs(output[13].asnumpy() - expect13)
error13 = np.ones(shape=expect13.shape) * 1.0e-5
assert np.all(diff13 < error13)
assert (output[13].shape() == expect13.shape)
assert output[13].shape() == expect13.shape
expect14 = np.sum(x14, axis=np_axis14, keepdims=keep_dims14)
diff14 = abs(output[14].asnumpy() - expect14)
error14 = np.ones(shape=expect14.shape) * 1.0e-5
assert np.all(diff14 < error14)
assert (output[14].shape() == expect14.shape)
assert output[14].shape() == expect14.shape

View File

@ -19,7 +19,6 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
@ -42,7 +41,7 @@ def test_relu_grad():
dy = Tensor(np.array([[[[1, 0, 1],
[0, 1, 0],
[1, 1, 1]]]]).astype(np.float32))
expect = np.array([[[[0, 0, 1, ], [0, 0, 0, ], [1, 1, 0.]]]]).astype(np.float32)
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

View File

@ -20,6 +20,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
class NetSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self):
super(NetSoftmaxCrossEntropyWithLogits, self).__init__()

View File

@ -20,6 +20,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell):
def __init__(self):
super(NetSparseSoftmaxCrossEntropyWithLogits, self).__init__()

View File

@ -36,8 +36,7 @@ class NetRMSProp(nn.Cell):
def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
if self.use_centered:
return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
else:
return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
def rmsprop_numpy(variable, gradients, mean_square, moment,

View File

@ -26,7 +26,8 @@ from mindspore.common import dtype as mstype
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.ops import prim_attr_register
from mindspore.ops.primitive import Primitive, PrimitiveWithInfer
from mindspore.ops.primitive import PrimitiveWithInfer
import mindspore.context as context
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
@ -305,8 +306,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)

View File

@ -13,26 +13,15 @@
# limitations under the License.
# ============================================================================
""" test ops """
import functools
import numpy as np
import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore import Tensor
from mindspore import ops
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
from mindspore.common.parameter import Parameter
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception
class ExpandDimsNet(nn.Cell):

View File

@ -17,6 +17,7 @@ import functools
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor, Parameter
from mindspore.common.parameter import ParameterTuple
from mindspore.ops import composite as C
@ -89,8 +90,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)

View File

@ -42,10 +42,10 @@ def cond_data_test(x_init, y_init):
def construct(self, x, y):
cond = self.less(x, y)
st1, sf1 = self.switch(x, cond)
st2, sf2 = self.switch(y, cond)
st1, _ = self.switch(x, cond)
st2, _ = self.switch(y, cond)
add_ret = self.add(st1, st2)
st3, sf3 = self.switch(self.value, cond)
_, sf3 = self.switch(self.value, cond)
sq_ret = self.square(sf3)
ret = self.merge((add_ret, sq_ret))
return ret[0]
@ -125,7 +125,7 @@ def test_if_str_is_not_none_right():
self.z = z
def construct(self, x, y):
if self.z == None:
if self.z is None:
ret = x
else:
ret = y
@ -146,7 +146,7 @@ def test_if_str_is_not_none_left():
self.z = z
def construct(self, x, y):
if None == self.z:
if self.z is None:
ret = x
else:
ret = y
@ -167,7 +167,7 @@ def test_if_none_equal_none():
self.z = z
def construct(self, x, y):
if self.z == None:
if self.z is None:
ret = x
else:
ret = y

View File

@ -16,6 +16,7 @@ import functools
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
@ -132,7 +133,7 @@ def test_list_append_2():
class ListOperate(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(ListOperate, self).__init__()
def construct(self, t, l):
@ -211,9 +212,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():

View File

@ -22,9 +22,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from ..ut_filter import non_graph_engine
@ -306,8 +304,8 @@ class NetWithLossCumSum(nn.Cell):
self.loss = VirtualLoss()
self.network = network
def construct(self, input):
predict = self.network(input)
def construct(self, input_):
predict = self.network(input_)
return self.loss(predict)
@ -318,8 +316,8 @@ class GradWrapCumSum(nn.Cell):
super(GradWrapCumSum, self).__init__()
self.network = network
def construct(self, input):
return C.grad(self.network)(input)
def construct(self, input_):
return C.grad(self.network)(input_)
class NetCumSum(nn.Cell):
@ -330,8 +328,8 @@ class NetCumSum(nn.Cell):
self.cumsum = P.CumSum()
self.axis = 1
def construct(self, input):
return self.cumsum(input, self.axis)
def construct(self, input_):
return self.cumsum(input_, self.axis)
class SignNet(nn.Cell):
@ -444,9 +442,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
import mindspore.context as context
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():

Some files were not shown because too many files have changed in this diff Show More