forked from mindspore-Ecosystem/mindspore
Fixing some tiny faults about Pylint in my code(ops)
This commit is contained in:
parent
6966bcbf6b
commit
f3f0cbaeee
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
@ -47,4 +44,4 @@ def test_net():
|
|||
expect = 3.0
|
||||
add = Net()
|
||||
output = add(x, y)
|
||||
assert (output == expect)
|
||||
assert output == expect
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
@ -37,7 +36,7 @@ def test_net_bool():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
|
@ -45,7 +44,7 @@ def test_net_int8():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
|
@ -53,7 +52,7 @@ def test_net_uint8():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
|
@ -61,7 +60,7 @@ def test_net_int16():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
|
@ -69,7 +68,7 @@ def test_net_uint16():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
|
@ -77,7 +76,7 @@ def test_net_int32():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
|
@ -85,7 +84,7 @@ def test_net_uint32():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
|
@ -93,7 +92,7 @@ def test_net_int64():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
|
@ -101,7 +100,7 @@ def test_net_uint64():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
|
@ -109,7 +108,7 @@ def test_net_float16():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
|
@ -117,7 +116,7 @@ def test_net_float32():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
|
@ -125,4 +124,4 @@ def test_net_float64():
|
|||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
assert np.all(output.asnumpy() == np.expand_dims(x, -1))
|
||||
|
|
|
@ -36,7 +36,7 @@ def test_net_int8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
|
@ -44,7 +44,7 @@ def test_net_uint8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
|
@ -52,7 +52,7 @@ def test_net_int16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
|
@ -60,7 +60,7 @@ def test_net_uint16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
|
@ -68,7 +68,7 @@ def test_net_int32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
|
@ -76,7 +76,7 @@ def test_net_uint32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
|
@ -84,7 +84,7 @@ def test_net_int64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
|
@ -92,7 +92,7 @@ def test_net_uint64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
|
@ -100,7 +100,7 @@ def test_net_float16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
|
@ -108,4 +108,4 @@ def test_net_float32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
assert np.all(output.asnumpy() == x.flatten())
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
@ -37,7 +36,7 @@ def test_net_bool():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
|
@ -45,7 +44,7 @@ def test_net_int8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
|
@ -53,7 +52,7 @@ def test_net_uint8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
|
@ -61,7 +60,7 @@ def test_net_int16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
|
@ -69,7 +68,7 @@ def test_net_uint16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
|
@ -77,7 +76,7 @@ def test_net_int32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
|
@ -85,7 +84,7 @@ def test_net_uint32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
|
@ -93,7 +92,7 @@ def test_net_int64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
|
@ -101,7 +100,7 @@ def test_net_uint64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
|
@ -109,7 +108,7 @@ def test_net_float16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
|
@ -117,7 +116,7 @@ def test_net_float32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
|
@ -125,4 +124,4 @@ def test_net_float64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
assert np.all(output.asnumpy() == np.isfinite(x))
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
@ -37,7 +36,7 @@ def test_net_bool():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
|
@ -45,7 +44,7 @@ def test_net_int8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
|
@ -53,7 +52,7 @@ def test_net_uint8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
|
@ -61,7 +60,7 @@ def test_net_int16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
|
@ -69,7 +68,7 @@ def test_net_uint16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
|
@ -77,7 +76,7 @@ def test_net_int32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
|
@ -85,7 +84,7 @@ def test_net_uint32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
|
@ -93,7 +92,7 @@ def test_net_int64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
|
@ -101,7 +100,7 @@ def test_net_uint64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
|
@ -109,7 +108,7 @@ def test_net_float16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
|
@ -117,7 +116,7 @@ def test_net_float32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
|
@ -125,4 +124,4 @@ def test_net_float64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
assert np.all(output.asnumpy() == np.reshape(x, (4, 4)))
|
||||
|
|
|
@ -36,7 +36,7 @@ def test_net_bool():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
|
@ -44,7 +44,7 @@ def test_net_int8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
|
@ -52,7 +52,7 @@ def test_net_uint8():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
|
@ -60,7 +60,7 @@ def test_net_int16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
|
@ -68,7 +68,7 @@ def test_net_uint16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
|
@ -76,7 +76,7 @@ def test_net_int32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
|
@ -84,7 +84,7 @@ def test_net_uint32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
|
@ -92,7 +92,7 @@ def test_net_int64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
|
@ -100,7 +100,7 @@ def test_net_uint64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
|
@ -108,7 +108,7 @@ def test_net_float16():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
|
@ -116,7 +116,7 @@ def test_net_float32():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
|
@ -124,4 +124,4 @@ def test_net_float64():
|
|||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
|
|
@ -12,12 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -34,11 +31,11 @@ class Net(nn.Cell):
|
|||
self.accumulation = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
self.learning_rate = Parameter(initializer(
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
'normal', [1,]), name='learning_rate')
|
||||
self.gradient = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
self.momentum = Parameter(initializer(
|
||||
'normal', [1, ]), name='momentum')
|
||||
'normal', [1,]), name='momentum')
|
||||
|
||||
def construct(self):
|
||||
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
|
||||
|
|
|
@ -18,9 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -16,11 +16,7 @@ import numpy as np
|
|||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -18,7 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
|
|
@ -33,8 +33,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -18,9 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
|
|
@ -18,9 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
@ -33,8 +30,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -12,11 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -34,8 +34,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -39,8 +39,8 @@ def test_image_gradients():
|
|||
expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32)
|
||||
net = Net()
|
||||
dy, dx = net(image)
|
||||
assert np.any(dx.asnumpy() - expected_dx) == False
|
||||
assert np.any(dy.asnumpy() - expected_dy) == False
|
||||
assert not np.any(dx.asnumpy() - expected_dx)
|
||||
assert not np.any(dy.asnumpy() - expected_dy)
|
||||
|
||||
|
||||
def test_image_gradients_multi_channel_depth():
|
||||
|
@ -61,5 +61,5 @@ def test_image_gradients_multi_channel_depth():
|
|||
net = Net()
|
||||
dy, dx = net(image)
|
||||
|
||||
assert np.any(dx.asnumpy() - expected_dx.asnumpy()) == False
|
||||
assert np.any(dy.asnumpy() - expected_dy.asnumpy()) == False
|
||||
assert not np.any(dx.asnumpy() - expected_dx.asnumpy())
|
||||
assert not np.any(dy.asnumpy() - expected_dy.asnumpy())
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -31,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -16,7 +16,6 @@ import numpy as np
|
|||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -43,7 +42,6 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
maxpool = Net()
|
||||
output = maxpool()
|
||||
print("***********output output*********")
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
@ -33,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
@ -33,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
@ -33,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -59,7 +59,7 @@ def test_net():
|
|||
'''Compare Numpy with MS type is float32'''
|
||||
labels_shape = (32,)
|
||||
logits_shape = [32, 1001]
|
||||
labels, logits, loss_np, bp_np = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
|
||||
labels, logits, loss_np, _ = np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, np.float32)
|
||||
expect = loss_np
|
||||
SparseSoftmaxCrossEntropyWithLogits = Net()
|
||||
loss_me = SparseSoftmaxCrossEntropyWithLogits(Tensor(logits), Tensor(labels))
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -34,7 +34,7 @@ class Adam:
|
|||
self.epsilon = epsilon
|
||||
|
||||
def train_mindspore_impl(self):
|
||||
input = Tensor(np.random.randn(self.batch_num, self.input_channels).astype(np.float32))
|
||||
input_ = Tensor(np.random.randn(self.batch_num, self.input_channels).astype(np.float32))
|
||||
weight_np = Tensor(np.random.randn(self.output_channels, self.input_channels).astype(np.float32))
|
||||
bias = Tensor(np.random.randn(self.output_channels).astype(np.float32))
|
||||
|
||||
|
@ -60,9 +60,9 @@ class Adam:
|
|||
train_network.set_train()
|
||||
|
||||
print('MS Initialized!')
|
||||
for i in range(self.epoch):
|
||||
train_network(input, label)
|
||||
output = ms_dense(input)
|
||||
for _ in range(self.epoch):
|
||||
train_network(input_, label)
|
||||
output = ms_dense(input_)
|
||||
print("===============output=================", output)
|
||||
return output.asnumpy()
|
||||
|
||||
|
|
|
@ -12,12 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -32,11 +29,11 @@ class Net(nn.Cell):
|
|||
self.accumulation = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
self.learning_rate = Parameter(initializer(
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
'normal', [1,]), name='learning_rate')
|
||||
self.gradient = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
self.momentum = Parameter(initializer(
|
||||
'normal', [1, ]), name='momentum')
|
||||
'normal', [1,]), name='momentum')
|
||||
|
||||
def construct(self):
|
||||
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
@ -38,7 +37,7 @@ def tf_me_batchmatmul(inputa, inputb):
|
|||
net = Net()
|
||||
net.set_train()
|
||||
model = Model(net)
|
||||
out_me = model.predict(Tensor(inputa), Tensor(inputb))
|
||||
model.predict(Tensor(inputa), Tensor(inputb))
|
||||
|
||||
|
||||
def test_batchmatmul_normal_shape1():
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -34,8 +34,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
@ -55,4 +55,4 @@ def test_net():
|
|||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
net(Tensor(x), Tensor(sens))
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -18,9 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -17,13 +17,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore import log as logger
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -12,32 +12,30 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import math
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import GELU, Cell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import GELU
|
||||
from mindspore.train.model import Model
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
def gelu_forward_me_impl(input):
|
||||
def gelu_forward_me_impl(input_):
|
||||
n = GELU()
|
||||
n.set_train()
|
||||
m = Model(n)
|
||||
out = m.predict(input)
|
||||
out = m.predict(input_)
|
||||
return out.asnumpy()
|
||||
|
||||
|
||||
def gelu_forward_cmp(input_shape, data_type=np.float32):
|
||||
input_np = np.random.randn(*input_shape).astype(data_type)
|
||||
input_me = Tensor(input_np)
|
||||
out_me = gelu_forward_me_impl(input_me)
|
||||
gelu_forward_me_impl(input_me)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="scalar")
|
||||
|
|
|
@ -12,11 +12,8 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import math
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
@ -33,15 +30,15 @@ class Grad(Cell):
|
|||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
def gelu_backward_me_impl(input, output_grad):
|
||||
def gelu_backward_me_impl(input_, output_grad):
|
||||
n = GELU()
|
||||
grad_with_sense = Grad(n)
|
||||
grad_with_sense.set_train()
|
||||
input_grad = grad_with_sense(input, output_grad)
|
||||
input_grad = grad_with_sense(input_, output_grad)
|
||||
return input_grad.asnumpy()
|
||||
|
||||
|
||||
|
@ -86,7 +83,7 @@ def gelu_backward_me_large_in_impl(x1, x2, output_grad):
|
|||
grad_with_sense = GradLargeIn(n)
|
||||
grad_with_sense.set_train()
|
||||
input_grad = grad_with_sense(x1, x2, output_grad)
|
||||
return input_grad[0].asnumpy(), input_grad[1].asnumpy(),
|
||||
return input_grad[0].asnumpy(), input_grad[1].asnumpy()
|
||||
|
||||
|
||||
def test_grad_gelu_input_10240_1024():
|
||||
|
|
|
@ -30,8 +30,8 @@ class Net(Cell):
|
|||
super(Net, self).__init__()
|
||||
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta)
|
||||
|
||||
def construct(self, input):
|
||||
x = self.layernorm(input)
|
||||
def construct(self, input_):
|
||||
x = self.layernorm(input_)
|
||||
return x
|
||||
|
||||
|
||||
|
|
|
@ -30,8 +30,8 @@ class Grad(Cell):
|
|||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input, output_grad, ):
|
||||
gout = self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad,):
|
||||
gout = self.grad(self.network)(input_, output_grad)
|
||||
return gout
|
||||
|
||||
|
||||
|
@ -40,8 +40,8 @@ class Net(Cell):
|
|||
super(Net, self).__init__()
|
||||
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta)
|
||||
|
||||
def construct(self, input):
|
||||
x = self.layernorm(input)
|
||||
def construct(self, input_):
|
||||
x = self.layernorm(input_)
|
||||
return x
|
||||
|
||||
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -39,9 +39,9 @@ def me_max(inputa, inputb, dtype=ms.float32):
|
|||
net.set_train()
|
||||
model = Model(net)
|
||||
print(type(inputa))
|
||||
if isinstance(inputa, np.ndarray) == True:
|
||||
if isinstance(inputa, np.ndarray):
|
||||
inputa = Tensor(inputa)
|
||||
if isinstance(inputb, np.ndarray) == True:
|
||||
if isinstance(inputb, np.ndarray):
|
||||
inputb = Tensor(inputb)
|
||||
out = model.predict(inputa, inputb)
|
||||
print(out)
|
||||
|
|
|
@ -46,12 +46,12 @@ class GradWrap(Cell):
|
|||
|
||||
def gen_data(inputA_np, inputB_np, grad=None):
|
||||
inputA_me = inputA_np
|
||||
if isinstance(inputA_np, np.ndarray) == True:
|
||||
if isinstance(inputA_np, np.ndarray):
|
||||
inputA_me = Tensor(inputA_me)
|
||||
inputB_me = inputB_np
|
||||
if isinstance(inputB_np, np.ndarray) == True:
|
||||
if isinstance(inputB_np, np.ndarray):
|
||||
inputB_me = Tensor(inputB_np)
|
||||
if grad == None:
|
||||
if grad is None:
|
||||
grad = np.random.randn(2).astype(np.float32)
|
||||
print("----inputA---")
|
||||
print(inputA_np)
|
||||
|
|
|
@ -31,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
return self.grad(self.network)(input_, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -18,9 +18,6 @@ import mindspore as ms
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.model import Model
|
||||
|
||||
|
@ -42,9 +39,9 @@ def me_min(inputa, inputb, dtype=ms.float32):
|
|||
net.set_train()
|
||||
model = Model(net)
|
||||
print(type(inputa))
|
||||
if isinstance(inputa, np.ndarray) == True:
|
||||
if isinstance(inputa, np.ndarray):
|
||||
inputa = Tensor(inputa)
|
||||
if isinstance(inputb, np.ndarray) == True:
|
||||
if isinstance(inputb, np.ndarray):
|
||||
inputb = Tensor(inputb)
|
||||
out = model.predict(inputa, inputb)
|
||||
print(out)
|
||||
|
|
|
@ -15,7 +15,6 @@
|
|||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops import composite as C
|
||||
|
@ -47,11 +46,11 @@ class GradWrap(Cell):
|
|||
|
||||
def gen_data(inputA_np, inputB_np, grad=None):
|
||||
inputA_me = inputA_np
|
||||
if isinstance(inputA_np, np.ndarray) == True:
|
||||
if isinstance(inputA_np, np.ndarray):
|
||||
inputA_me = Tensor(inputA_me)
|
||||
|
||||
inputB_me = inputB_np
|
||||
if isinstance(inputB_np, np.ndarray) == True:
|
||||
if isinstance(inputB_np, np.ndarray):
|
||||
inputB_me = Tensor(inputB_np)
|
||||
|
||||
if grad is None:
|
||||
|
|
|
@ -12,11 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
|
|
@ -16,11 +16,7 @@ import numpy as np
|
|||
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.model import Model
|
||||
|
@ -33,31 +29,29 @@ class PowMe(Cell):
|
|||
super(PowMe, self).__init__()
|
||||
self.pow = P.Pow()
|
||||
|
||||
def construct(self, input, exp):
|
||||
return self.pow(input, exp)
|
||||
def construct(self, input_, exp):
|
||||
return self.pow(input_, exp)
|
||||
|
||||
|
||||
def pow_forward_me_impl(input, exp):
|
||||
def pow_forward_me_impl(input_, exp):
|
||||
n = PowMe()
|
||||
n.set_train()
|
||||
m = Model(n)
|
||||
out = m.predict(input, exp)
|
||||
out = m.predict(input_, exp)
|
||||
return out.asnumpy()
|
||||
|
||||
|
||||
def pow_forward_cmp(input_shape, exp_shape):
|
||||
if len(input_shape) == 0:
|
||||
if not input_shape:
|
||||
input_np = np.absolute(np.random.randn())
|
||||
else:
|
||||
input_np = np.absolute(np.random.randn(*input_shape).astype(np.float32))
|
||||
input_tf = input_np
|
||||
input_me = Tensor(input_np, dtype=ms.float32)
|
||||
|
||||
if len(exp_shape) == 0:
|
||||
if not exp_shape:
|
||||
exp_np = np.absolute(np.random.randn())
|
||||
else:
|
||||
exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32))
|
||||
exp_tf = exp_np
|
||||
exp_me = Tensor(exp_np, dtype=ms.float32)
|
||||
|
||||
out_me = pow_forward_me_impl(input_me, exp_me)
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
|
|
@ -18,8 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
@ -33,8 +31,8 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, input):
|
||||
return self.grad(self.network)(input)
|
||||
def construct(self, input_):
|
||||
return self.grad(self.network)(input_)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -16,11 +16,7 @@ import numpy as np
|
|||
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.model import Model
|
||||
|
@ -41,11 +37,11 @@ def me_select(cond, inputa, inputb, dtype=ms.float32):
|
|||
net = Select(dtype)
|
||||
net.set_train()
|
||||
model = Model(net)
|
||||
if isinstance(inputa, np.ndarray) == True:
|
||||
if isinstance(inputa, np.ndarray):
|
||||
inputa = Tensor(inputa)
|
||||
if isinstance(inputb, np.ndarray) == True:
|
||||
if isinstance(inputb, np.ndarray):
|
||||
inputb = Tensor(inputb)
|
||||
if isinstance(cond, np.bool_) == True:
|
||||
if isinstance(cond, np.bool_):
|
||||
cond = np.array(cond)
|
||||
|
||||
out = model.predict(Tensor(cond), inputa, inputb)
|
||||
|
|
|
@ -18,7 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -37,5 +37,5 @@ def test_net():
|
|||
features = np.random.randn(32, 1001).astype(np.float16)
|
||||
labels = np.random.randn(32, 1001).astype(np.float16)
|
||||
SoftmaxCrossEntropyWithLogits = Net()
|
||||
output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
|
||||
SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
|
||||
# print(output.asnumpy())
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.ops.operations as P
|
||||
|
@ -32,8 +31,8 @@ class Net(Cell):
|
|||
self.end = end
|
||||
self.stride = stride
|
||||
|
||||
def construct(self, input):
|
||||
x = self.stridedslice(input, self.begin, self.end, self.stride)
|
||||
def construct(self, input_):
|
||||
x = self.stridedslice(input_, self.begin, self.end, self.stride)
|
||||
return x
|
||||
|
||||
|
||||
|
@ -47,17 +46,17 @@ def me_stridedslice(input1, begin, end, stride):
|
|||
|
||||
|
||||
def test_stridedslice_input_2d():
|
||||
input = np.random.randn(5, 5).astype(np.int32)
|
||||
input_ = np.random.randn(5, 5).astype(np.int32)
|
||||
begin = (0, 0)
|
||||
end = (2, 2)
|
||||
stride = (1, 1)
|
||||
|
||||
me_stridedslice(input, begin, end, stride)
|
||||
me_stridedslice(input_, begin, end, stride)
|
||||
|
||||
|
||||
def test_stridedslice_input_3d():
|
||||
input = np.random.randn(5, 5, 5).astype(np.float32)
|
||||
input_ = np.random.randn(5, 5, 5).astype(np.float32)
|
||||
begin = (0, 0, 0)
|
||||
end = (3, 3, 3)
|
||||
stride = (1, 1, 1)
|
||||
me_stridedslice(input, begin, end, stride)
|
||||
me_stridedslice(input_, begin, end, stride)
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
@ -30,8 +29,8 @@ class Grad(Cell):
|
|||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input, output_grad):
|
||||
gout = self.grad(self.network)(input, output_grad)
|
||||
def construct(self, input_, output_grad):
|
||||
gout = self.grad(self.network)(input_, output_grad)
|
||||
return gout
|
||||
|
||||
|
||||
|
@ -43,13 +42,13 @@ class Net(Cell):
|
|||
self.end = end
|
||||
self.stride = stride
|
||||
|
||||
def construct(self, input):
|
||||
x = self.stridedslice(input, self.begin, self.end, self.stride)
|
||||
def construct(self, input_):
|
||||
x = self.stridedslice(input_, self.begin, self.end, self.stride)
|
||||
return x
|
||||
|
||||
|
||||
def me_stridedslice(input, begin, end, stride, gradients):
|
||||
input_me = Tensor(input)
|
||||
def me_stridedslice(input_, begin, end, stride, gradients):
|
||||
input_me = Tensor(input_)
|
||||
out_grad_me = Tensor(gradients)
|
||||
net_me = Grad(Net(begin, end, stride))
|
||||
net_me.set_train()
|
||||
|
@ -58,9 +57,9 @@ def me_stridedslice(input, begin, end, stride, gradients):
|
|||
|
||||
|
||||
def test_grad_stridedslice_1d():
|
||||
input = np.random.randn(2).astype(np.float32)
|
||||
input_ = np.random.randn(2).astype(np.float32)
|
||||
begin = (0,)
|
||||
end = (2,)
|
||||
stride = (1,)
|
||||
gradients = np.random.randn(2).astype(np.float32)
|
||||
me_stridedslice(input, begin, end, stride, gradients)
|
||||
me_stridedslice(input_, begin, end, stride, gradients)
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from mindspore.train.model import Model
|
||||
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -17,9 +17,6 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -29,14 +29,14 @@ class Net(nn.Cell):
|
|||
self.transpose = P.Transpose()
|
||||
self.perm = perm_in
|
||||
|
||||
def construct(self, input):
|
||||
x = self.transpose(input, self.perm)
|
||||
def construct(self, input_):
|
||||
x = self.transpose(input_, self.perm)
|
||||
return x
|
||||
|
||||
|
||||
def ms_transpose(input, perm_in):
|
||||
def ms_transpose(input_, perm_in):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
input_me = Tensor(input)
|
||||
input_me = Tensor(input_)
|
||||
net = Net(perm_in)
|
||||
net.set_train()
|
||||
model = Model(net)
|
||||
|
@ -47,6 +47,6 @@ def ms_transpose(input, perm_in):
|
|||
|
||||
|
||||
def test_net():
|
||||
input = np.random.randn(8, 24, 1, 1).astype(np.float16)
|
||||
input_ = np.random.randn(8, 24, 1, 1).astype(np.float16)
|
||||
perm = (0, 2, 3, 1)
|
||||
ms_transpose(input, perm)
|
||||
ms_transpose(input_, perm)
|
||||
|
|
|
@ -33,19 +33,19 @@ class Net(nn.Cell):
|
|||
return self.seg_sum(x, segment_ids, self.num_segments)
|
||||
|
||||
|
||||
def me_un_seg_sum(input, indices, num_segments):
|
||||
def me_un_seg_sum(input_, indices, num_segments):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
net = Net(num_segments)
|
||||
net.set_train()
|
||||
model = Model(net)
|
||||
out = model.predict(Tensor(input), Tensor(indices))
|
||||
out = model.predict(Tensor(input_), Tensor(indices))
|
||||
return out.asnumpy()
|
||||
|
||||
|
||||
def comapre_un_seg_sum(shape, indices, num_segments, dtype):
|
||||
input = np.random.randn(*shape).astype(dtype)
|
||||
input_ = np.random.randn(*shape).astype(dtype)
|
||||
indices_me = np.array(indices).astype(np.int32)
|
||||
out_me = me_un_seg_sum(input, indices_me, num_segments)
|
||||
out_me = me_un_seg_sum(input_, indices_me, num_segments)
|
||||
print("-------------ms------------------")
|
||||
print(out_me)
|
||||
|
||||
|
|
|
@ -87,8 +87,8 @@ if __name__ == '__main__':
|
|||
super(dataiter, self).__init__()
|
||||
|
||||
def construct(self):
|
||||
input, label = get_next()
|
||||
return tadd(input)
|
||||
input_, _ = get_next()
|
||||
return tadd(input_)
|
||||
|
||||
|
||||
net = dataiter()
|
||||
|
|
|
@ -18,7 +18,6 @@ import pytest
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
|
|
@ -21,7 +21,6 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
|
|
@ -57,7 +57,7 @@ def test_momentum():
|
|||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
losses = []
|
||||
for i in range(epoch):
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
|
@ -70,6 +70,5 @@ def test_momentum():
|
|||
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
|
||||
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
|
||||
"""
|
||||
error = np.ones(shape=[1, 10]) * 1.0e-6
|
||||
|
||||
return losses
|
||||
|
|
|
@ -20,7 +20,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
|
||||
|
|
|
@ -21,7 +21,6 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
@ -48,7 +47,7 @@ class NetReluGrad(nn.Cell):
|
|||
def test_relu_grad():
|
||||
relu_grad = NetReluGrad()
|
||||
output = relu_grad()
|
||||
expect = np.array([[[[0, 0, 1, ], [0, 0, 0, ], [1, 1, 0.]]]]).astype(np.float32)
|
||||
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.float32)
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
|
|
@ -44,8 +44,8 @@ class NetRelu(nn.Cell):
|
|||
def test_relu():
|
||||
relu = NetRelu()
|
||||
output = relu()
|
||||
expect = np.array([[[[0, 1, 10, ],
|
||||
[1, 0, 1, ],
|
||||
expect = np.array([[[[0, 1, 10,],
|
||||
[1, 0, 1,],
|
||||
[10, 1, 0.]]]]).astype(np.float32)
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
|
|
@ -0,0 +1,519 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import te.lang.cce
|
||||
from te import tvm
|
||||
from te.platform import CUBE_MKN
|
||||
from topi import generic
|
||||
from topi.cce import util
|
||||
from topi.cce.util import is_v200_version
|
||||
|
||||
# pylint: disable=R0912,R0913,R0914,R0915,E1101
|
||||
# the dim of shape in conv must be 4
|
||||
PAD_SHAPE_DIM = 2
|
||||
|
||||
NONETYPE = type(None)
|
||||
|
||||
|
||||
@util.check_input_type((list, tuple), (list, tuple), str, str, str, (list, int), (list, int),
|
||||
int, int, (list, tuple), (list, tuple),
|
||||
str, str, str,
|
||||
str, str, str,
|
||||
str, bool, str)
|
||||
def conv_layer_cce_para_check(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw,
|
||||
strideh, stridew, quantize_config, scale_sqrt,
|
||||
scale_q_dtype, offset_q_dtype, scale_dq_dtype,
|
||||
scale_rq_dtype, offset_rq_dtype, offset_w_dtype,
|
||||
offset_pad_dtype, bias, kernel_name):
|
||||
# conv shape check
|
||||
util.check_kernel_name(kernel_name)
|
||||
|
||||
# conv data type check
|
||||
util.check_dtype_rule(in_dtype, ['float16', 'int8', 'uint8'])
|
||||
util.check_dtype_rule(w_dtype, ['float16', 'int8', 'uint8'])
|
||||
res_dtype_list = ['float16', 'int8', 'uint8']
|
||||
if is_v200_version():
|
||||
res_dtype_list.append('int32')
|
||||
util.check_dtype_rule(res_dtype, res_dtype_list)
|
||||
util.check_dtype_rule(scale_q_dtype, ['float16'])
|
||||
util.check_dtype_rule(offset_q_dtype, ['float16'])
|
||||
util.check_dtype_rule(scale_dq_dtype, ['float16'])
|
||||
util.check_dtype_rule(scale_rq_dtype, ['float16'])
|
||||
util.check_dtype_rule(offset_rq_dtype, ['float16'])
|
||||
util.check_dtype_rule(offset_w_dtype, ['int32'])
|
||||
util.check_dtype_rule(offset_pad_dtype, ['uint8'])
|
||||
|
||||
if not isinstance(bias, bool):
|
||||
raise RuntimeError("bias dtype should be bool.")
|
||||
|
||||
if quantize_config[0] == 0:
|
||||
if is_v200_version():
|
||||
util.check_dtype_rule(in_dtype, ('int8',))
|
||||
util.check_dtype_rule(w_dtype, ('int8',))
|
||||
util.check_dtype_rule(res_dtype, ('int32',))
|
||||
else:
|
||||
util.check_dtype_rule(in_dtype, ['float16'])
|
||||
util.check_dtype_rule(w_dtype, ['float16'])
|
||||
util.check_dtype_rule(res_dtype, ['float16'])
|
||||
|
||||
if quantize_config[0] == 1:
|
||||
util.check_dtype_rule(w_dtype, ['int8'])
|
||||
if quantize_config[1] == 0:
|
||||
util.check_dtype_rule(in_dtype, ['int8', 'float16'])
|
||||
util.check_dtype_rule(res_dtype, ['int8', 'float16'])
|
||||
elif quantize_config[1] == 1:
|
||||
util.check_dtype_rule(in_dtype, ['uint8', 'float16'])
|
||||
util.check_dtype_rule(res_dtype, ['uint8', 'float16'])
|
||||
elif quantize_config[1] == 2:
|
||||
raise RuntimeError("All Offset mode quantize not support.")
|
||||
else:
|
||||
raise RuntimeError("Invalid quantize algorithm.")
|
||||
|
||||
# quantize switch on
|
||||
if quantize_config[0] == 1:
|
||||
# quantize -> DeQuantize dataflow
|
||||
if in_dtype == 'float16' and w_dtype == 'int8' and res_dtype == 'float16':
|
||||
pass
|
||||
# DeQuantize dataflow
|
||||
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and
|
||||
res_dtype == 'float16'):
|
||||
pass
|
||||
# quantize -> ReQuantize dataflow
|
||||
elif (in_dtype == 'float16' and w_dtype == 'int8' and res_dtype in
|
||||
['int8', 'uint8']):
|
||||
pass
|
||||
# ReQuantize dataflow
|
||||
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and res_dtype in
|
||||
['int8', 'uint8']):
|
||||
pass
|
||||
else:
|
||||
raise RuntimeError("Not support in/out data type for quantize.")
|
||||
|
||||
if quantize_config not in ([1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 1]):
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
|
||||
if scale_sqrt not in ([0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1],
|
||||
[1, 0, 1], [0, 1, 1], [1, 1, 1]):
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
|
||||
# quantize switch off
|
||||
elif quantize_config[0] == 0:
|
||||
if quantize_config != [0, 0, 0]:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
if scale_sqrt != [0, 0, 0]:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
else:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
|
||||
if isinstance(padh, list):
|
||||
if len(padh) != PAD_SHAPE_DIM:
|
||||
raise RuntimeError("Dimension must be %d when padh is a list." % PAD_SHAPE_DIM)
|
||||
pad_top = padh[0]
|
||||
pad_bottom = padh[1]
|
||||
else:
|
||||
pad_top = padh
|
||||
pad_bottom = padh
|
||||
|
||||
if isinstance(padw, list):
|
||||
if len(padw) != PAD_SHAPE_DIM:
|
||||
raise RuntimeError("Dimension must be %d when padw is a list." % PAD_SHAPE_DIM)
|
||||
pad_left = padw[0]
|
||||
pad_right = padw[1]
|
||||
else:
|
||||
pad_left = padw
|
||||
pad_right = padw
|
||||
|
||||
shape_in, shape_w = te.lang.cce.check_conv_shape(shape_in, shape_w, pad_top, pad_bottom, \
|
||||
pad_left, pad_right, strideh, \
|
||||
stridew, in_dtype, w_dtype, res_dtype)
|
||||
|
||||
return shape_in, shape_w
|
||||
|
||||
|
||||
@util.check_input_type((list, tuple), (list, tuple), str, str, str, \
|
||||
(list, int), (list, int), int, int,
|
||||
(list, NONETYPE), (list, NONETYPE),
|
||||
str, str, str,
|
||||
str, str, str, str,
|
||||
bool, str, bool, bool)
|
||||
def conv_layer_cce(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw, strideh, stridew,
|
||||
quantize_config=None, scale_sqrt=None,
|
||||
scale_q_dtype='float16', offset_q_dtype='float16', scale_dq_dtype='float16',
|
||||
scale_rq_dtype='float16', offset_rq_dtype='float16', offset_w_dtype='int32',
|
||||
offset_pad_dtype='uint8', bias=False, kernel_name="cce_conv", need_build=False,
|
||||
need_print=False):
|
||||
"""
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape_in : shape of data_in
|
||||
|
||||
shape_w : shape of filter
|
||||
|
||||
in_dtype : the feature map data type
|
||||
|
||||
w_dtype : the weight data type
|
||||
|
||||
res_dtype : the result data type
|
||||
|
||||
padh: the padding shape in H
|
||||
|
||||
padw: the padding shape in weight
|
||||
|
||||
strideh: the stride value in H
|
||||
|
||||
stridew: the stride value in weight
|
||||
|
||||
quantize_config: quantize config table, default [0, 0, 0]
|
||||
quantize_config[0] - quantize function switch
|
||||
0: quantize off
|
||||
1: quantize on
|
||||
quantize_config[1] - quantize_algorithm
|
||||
0: non offset
|
||||
1: half offset
|
||||
2: all offset ( Not supported now )
|
||||
quantize_config[2] - QuantizeScaleType (for Dequantize/Requantize, quantize always scalar)
|
||||
0: scalar
|
||||
1: vector
|
||||
|
||||
scale_sqrt: scale mode
|
||||
scale_sqrt[0] - Quantize scale mode
|
||||
0: non sqrt
|
||||
1: sqrt
|
||||
scale_sqrt[1] - DeQuantize scale mode
|
||||
0: non sqrt
|
||||
1: sqrt
|
||||
scale_sqrt[2] - ReQuantize scale mode
|
||||
0: non sqrt
|
||||
1: sqrt
|
||||
|
||||
scale_q_dtype: Quantize scale data type, default 'float16'
|
||||
|
||||
offset_q_dtype: Quantize offset data type, default 'float16'
|
||||
|
||||
scale_dq_dtype: DeQuantize scale data type, default 'float16'
|
||||
|
||||
scale_rq_dtype: ReQuantize scale data type, default 'float16'
|
||||
|
||||
offset_rq_dtype: ReQuantize offset data type, default 'float16'
|
||||
|
||||
offset_w_dtype: weight offset data type, default 'int32'
|
||||
|
||||
offset_pad_dtype: Quantize Cube offset data type, default 'uint8'
|
||||
|
||||
bias: the tag for bias or not
|
||||
|
||||
kernel_name : cce kernel name, default value is "cce_conv"
|
||||
|
||||
need_build : if need to build CCEC kernel, default value is False
|
||||
|
||||
need_print : if need to print the ir, default value is False
|
||||
|
||||
Returns
|
||||
-------
|
||||
wrapped_tensor
|
||||
|
||||
"""
|
||||
# for pylint, otherwise "Dangerous default value [] as argument"
|
||||
if quantize_config is None:
|
||||
quantize_config = [0, 0, 0]
|
||||
if scale_sqrt is None:
|
||||
scale_sqrt = [0, 0, 0]
|
||||
|
||||
in_dtype = in_dtype.lower()
|
||||
w_dtype = w_dtype.lower()
|
||||
res_dtype = res_dtype.lower()
|
||||
scale_q_dtype = scale_q_dtype.lower()
|
||||
offset_q_dtype = offset_q_dtype.lower()
|
||||
scale_dq_dtype = scale_dq_dtype.lower()
|
||||
scale_rq_dtype = scale_rq_dtype.lower()
|
||||
offset_rq_dtype = offset_rq_dtype.lower()
|
||||
offset_w_dtype = offset_w_dtype.lower()
|
||||
offset_pad_dtype = offset_pad_dtype.lower()
|
||||
|
||||
mad_dtype = 'float32'
|
||||
if w_dtype == 'int8':
|
||||
mad_dtype = 'int32'
|
||||
|
||||
shape_in = list(shape_in)
|
||||
shape_w = list(shape_w)
|
||||
|
||||
shape_in, shape_w = conv_layer_cce_para_check(shape_in, shape_w, in_dtype, w_dtype, res_dtype, padh, padw, strideh,
|
||||
stridew,
|
||||
quantize_config, scale_sqrt, scale_q_dtype, offset_q_dtype,
|
||||
scale_dq_dtype,
|
||||
scale_rq_dtype, offset_rq_dtype, offset_w_dtype, offset_pad_dtype,
|
||||
bias, kernel_name)
|
||||
|
||||
# quantize switch on
|
||||
if quantize_config[0] == 1:
|
||||
quantize_turn_on = True
|
||||
# quantize -> DeQuantize dataflow
|
||||
if in_dtype == 'float16' and w_dtype == 'int8' and res_dtype == 'float16':
|
||||
is_quantize = True
|
||||
is_dequantize = True
|
||||
is_requantize = False
|
||||
# DeQuantize dataflow
|
||||
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and
|
||||
res_dtype == 'float16'):
|
||||
is_quantize = False
|
||||
is_dequantize = True
|
||||
is_requantize = False
|
||||
# quantize -> ReQuantize dataflow
|
||||
elif (in_dtype == 'float16' and w_dtype == 'int8' and res_dtype in
|
||||
['int8', 'uint8']):
|
||||
is_quantize = True
|
||||
is_dequantize = False
|
||||
is_requantize = True
|
||||
# ReQuantize dataflow
|
||||
elif (in_dtype in ['int8', 'uint8'] and w_dtype == 'int8' and res_dtype in
|
||||
['int8', 'uint8']):
|
||||
is_quantize = False
|
||||
is_dequantize = False
|
||||
is_requantize = True
|
||||
else:
|
||||
raise RuntimeError("Not support in/out data type for quantize.")
|
||||
|
||||
# quantize switch off
|
||||
elif quantize_config[0] == 0:
|
||||
quantize_turn_on = False
|
||||
is_quantize = False
|
||||
is_dequantize = False
|
||||
is_requantize = False
|
||||
|
||||
if quantize_config != [0, 0, 0]:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
if scale_sqrt != [0, 0, 0]:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
else:
|
||||
raise RuntimeError("Invalid Quantize Config.")
|
||||
|
||||
batch_size = shape_in[0]
|
||||
in_channel = shape_in[1]
|
||||
feature_map_h = shape_in[2]
|
||||
feature_map_w = shape_in[3]
|
||||
block_size_k = CUBE_MKN[in_dtype]['mac'][1]
|
||||
fmap_shape_nc1hwc0 = (batch_size, (in_channel + block_size_k - 1) // block_size_k,
|
||||
feature_map_h, feature_map_w, block_size_k)
|
||||
|
||||
out_channel = shape_w[0]
|
||||
in_channel_weight = shape_w[1]
|
||||
filter_h = shape_w[2]
|
||||
filter_w = shape_w[3]
|
||||
block_size_k = CUBE_MKN[w_dtype]['mac'][1]
|
||||
block_size_n = CUBE_MKN[w_dtype]['mac'][2]
|
||||
filter_shape_frac_z = (in_channel_weight * filter_h * filter_w // block_size_k,
|
||||
out_channel // block_size_n, block_size_n, block_size_k)
|
||||
|
||||
with tvm.target.cce():
|
||||
data = tvm.placeholder(
|
||||
fmap_shape_nc1hwc0, name='Fmap', dtype=in_dtype)
|
||||
weight = tvm.placeholder(
|
||||
filter_shape_frac_z, name='Filter', dtype=w_dtype)
|
||||
bias_tensor = None
|
||||
scale_q = None
|
||||
scale_dq = None
|
||||
scale_rq = None
|
||||
offset_pad = None
|
||||
offset_rq = None
|
||||
offset_q = None
|
||||
scale_drq = None
|
||||
|
||||
# bias or fusion_bias(half offset)
|
||||
if bias or (quantize_config[1] == 1 and quantize_turn_on):
|
||||
bias_tensor = tvm.placeholder(
|
||||
(out_channel,), name='bias_tensor', \
|
||||
dtype="int32" if quantize_turn_on else res_dtype)
|
||||
|
||||
# quantize on
|
||||
if quantize_turn_on:
|
||||
quantize_algorithm = quantize_config[1]
|
||||
if is_quantize:
|
||||
scale_q = tvm.placeholder(
|
||||
(CUBE_MKN[scale_q_dtype]['mac'][1],), name='scaleQ', dtype=scale_q_dtype)
|
||||
if quantize_algorithm == 1:
|
||||
offset_q = tvm.placeholder(
|
||||
(CUBE_MKN[offset_q_dtype]['mac'][1],), name='offsetQ', dtype=offset_q_dtype)
|
||||
|
||||
if is_dequantize:
|
||||
scale_dq_shape = (CUBE_MKN[scale_dq_dtype]['mac'][1],) if quantize_config[2] == 0 \
|
||||
else (out_channel,)
|
||||
scale_dq = tvm.placeholder(
|
||||
scale_dq_shape, name='scaleDq', dtype=scale_dq_dtype)
|
||||
|
||||
if is_requantize:
|
||||
scale_rq_shape = (CUBE_MKN[scale_rq_dtype]['mac'][1],) if quantize_config[2] == 0 \
|
||||
else (out_channel,)
|
||||
scale_rq = tvm.placeholder(
|
||||
scale_rq_shape, name='scaleRq', dtype=scale_rq_dtype)
|
||||
if quantize_algorithm == 1:
|
||||
offset_rq_shape = (CUBE_MKN[offset_rq_dtype]['mac'][1],)
|
||||
offset_rq = tvm.placeholder(
|
||||
offset_rq_shape, name='offsetRq', dtype=offset_rq_dtype)
|
||||
|
||||
# need offset_pad , for half offset
|
||||
if quantize_algorithm == 1:
|
||||
offset_pad = tvm.placeholder(
|
||||
(CUBE_MKN[offset_pad_dtype]['mac'][1],), name='offset_pad',
|
||||
dtype=offset_pad_dtype)
|
||||
|
||||
if quantize_algorithm == 0:
|
||||
if is_quantize:
|
||||
if is_dequantize:
|
||||
scale_drq = scale_dq
|
||||
else:
|
||||
scale_drq = scale_rq
|
||||
|
||||
conv_res = te.lang.cce.conv(
|
||||
data, weight, {"bias_tensor": bias_tensor,
|
||||
"scale_q": scale_q,
|
||||
"offset_q": offset_q,
|
||||
"scale_drq": scale_drq,
|
||||
"offset_pad": offset_pad,
|
||||
"offset_rq": offset_rq,
|
||||
"quantize_config": quantize_config,
|
||||
"is_quantize": is_quantize,
|
||||
"is_dequantize": is_dequantize,
|
||||
"is_requantize": is_requantize,
|
||||
"scale_sqrt": scale_sqrt,
|
||||
"pad_h": padh, "pad_w": padw,
|
||||
"stride_h": strideh, "stride_w": stridew,
|
||||
"filter_h": filter_h, "filter_w": filter_w,
|
||||
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
|
||||
dsl_flag=False)
|
||||
if bias:
|
||||
tensor_list = [data, weight, bias_tensor, scale_q,
|
||||
scale_drq, conv_res]
|
||||
else:
|
||||
tensor_list = [data, weight, scale_q,
|
||||
scale_drq, conv_res]
|
||||
else:
|
||||
if is_dequantize:
|
||||
scale_drq = scale_dq
|
||||
else:
|
||||
scale_drq = scale_rq
|
||||
conv_res = te.lang.cce.conv(
|
||||
data, weight, {"bias_tensor": bias_tensor,
|
||||
"scale_q": scale_q,
|
||||
"offset_q": offset_q,
|
||||
"scale_drq": scale_drq,
|
||||
"offset_pad": offset_pad,
|
||||
"offset_rq": offset_rq,
|
||||
"quantize_config": quantize_config,
|
||||
"is_quantize": is_quantize,
|
||||
"is_dequantize": is_dequantize,
|
||||
"is_requantize": is_requantize,
|
||||
"scale_sqrt": scale_sqrt,
|
||||
"pad_h": padh, "pad_w": padw,
|
||||
"stride_h": strideh, "stride_w": stridew,
|
||||
"filter_h": filter_h, "filter_w": filter_w,
|
||||
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
|
||||
dsl_flag=False)
|
||||
if bias:
|
||||
tensor_list = [data, weight, bias_tensor,
|
||||
scale_drq, conv_res]
|
||||
else:
|
||||
tensor_list = [data, weight,
|
||||
scale_drq, conv_res]
|
||||
|
||||
# half offset
|
||||
else:
|
||||
if is_quantize:
|
||||
if is_dequantize:
|
||||
scale_drq = scale_dq
|
||||
else:
|
||||
scale_drq = scale_rq
|
||||
conv_res = te.lang.cce.conv(
|
||||
data, weight, {"bias_tensor": bias_tensor,
|
||||
"scale_q": scale_q,
|
||||
"offset_q": offset_q,
|
||||
"scale_drq": scale_drq,
|
||||
"offset_pad": offset_pad,
|
||||
"offset_rq": offset_rq,
|
||||
"quantize_config": quantize_config,
|
||||
"is_quantize": is_quantize,
|
||||
"is_dequantize": is_dequantize,
|
||||
"is_requantize": is_requantize,
|
||||
"scale_sqrt": scale_sqrt,
|
||||
"pad_h": padh, "pad_w": padw,
|
||||
"stride_h": strideh, "stride_w": stridew,
|
||||
"filter_h": filter_h, "filter_w": filter_w,
|
||||
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
|
||||
dsl_flag=False)
|
||||
if is_dequantize:
|
||||
tensor_list = [data, weight, bias_tensor, scale_q, offset_q,
|
||||
scale_drq, offset_pad, conv_res]
|
||||
else:
|
||||
tensor_list = [data, weight, bias_tensor, scale_q, offset_q,
|
||||
scale_drq, offset_rq, offset_pad, conv_res]
|
||||
else:
|
||||
if is_dequantize:
|
||||
scale_drq = scale_dq
|
||||
else:
|
||||
scale_drq = scale_rq
|
||||
conv_res = te.lang.cce.conv(
|
||||
data, weight, {"bias_tensor": bias_tensor,
|
||||
"scale_q": scale_q,
|
||||
"offset_q": offset_q,
|
||||
"scale_drq": scale_drq,
|
||||
"offset_pad": offset_pad,
|
||||
"offset_rq": offset_rq,
|
||||
"quantize_config": quantize_config,
|
||||
"is_quantize": is_quantize,
|
||||
"is_dequantize": is_dequantize,
|
||||
"is_requantize": is_requantize,
|
||||
"scale_sqrt": scale_sqrt,
|
||||
"pad_h": padh, "pad_w": padw,
|
||||
"stride_h": strideh, "stride_w": stridew,
|
||||
"filter_h": filter_h, "filter_w": filter_w,
|
||||
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
|
||||
dsl_flag=False)
|
||||
if is_dequantize:
|
||||
tensor_list = [data, weight, bias_tensor,
|
||||
scale_drq, offset_pad, conv_res]
|
||||
else:
|
||||
tensor_list = [data, weight, bias_tensor,
|
||||
scale_drq, offset_rq, offset_pad, conv_res]
|
||||
else:
|
||||
conv_res = te.lang.cce.conv(
|
||||
data, weight, {"bias_tensor": bias_tensor,
|
||||
"scale_q": scale_q,
|
||||
"offset_q": offset_q,
|
||||
"scale_drq": scale_drq,
|
||||
"offset_pad": offset_pad,
|
||||
"offset_rq": offset_rq,
|
||||
"quantize_config": quantize_config,
|
||||
"is_quantize": is_quantize,
|
||||
"is_dequantize": is_dequantize,
|
||||
"is_requantize": is_requantize,
|
||||
"scale_sqrt": scale_sqrt,
|
||||
"pad_h": padh, "pad_w": padw,
|
||||
"stride_h": strideh, "stride_w": stridew,
|
||||
"filter_h": filter_h, "filter_w": filter_w,
|
||||
"res_dtype": res_dtype, "mad_dtype": mad_dtype},
|
||||
dsl_flag=False)
|
||||
if bias:
|
||||
tensor_list = [data, weight, bias_tensor, conv_res]
|
||||
else:
|
||||
tensor_list = [data, weight, conv_res]
|
||||
sch = generic.auto_schedule(conv_res)
|
||||
|
||||
config = {
|
||||
"print_ir": need_print,
|
||||
"need_build": need_build,
|
||||
"name": kernel_name,
|
||||
"tensor_list": tensor_list
|
||||
}
|
||||
|
||||
te.lang.cce.cce_build_code(sch, config)
|
|
@ -20,12 +20,12 @@ from mindspore.ops import operations as P
|
|||
# y = x^2
|
||||
class CusSquare(PrimitiveWithInfer):
|
||||
"""CusSquare definition"""
|
||||
from square_impl import CusSquareImpl
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusSquare"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
from square_impl import CusSquareImpl
|
||||
|
||||
def vm_impl(self, x):
|
||||
x = x.asnumpy()
|
||||
|
|
|
@ -119,7 +119,7 @@ def test_4d_transpose_ab():
|
|||
[[5612, 5810, 6008, 6206]]]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
def test_4d_fp16():
|
||||
def test_4D_fp16():
|
||||
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float16)
|
||||
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float16)
|
||||
|
||||
|
|
|
@ -68,10 +68,11 @@ def test_batchnrom_fold2():
|
|||
current_step = np.array([0]).astype('int32')
|
||||
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean),
|
||||
Tensor(running_std), Tensor(running_mean), Tensor(current_step))
|
||||
expect = ((x + beta.reshape(-1, 1, 1) -
|
||||
(gamma * running_mean / running_std).reshape(-1, 1, 1) if current_step >= freeze_bn else
|
||||
x * (running_std / batch_std).reshape(-1, 1, 1) +
|
||||
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
|
||||
expect = (x + beta.reshape(-1, 1,
|
||||
1) - (gamma * running_mean / running_std).reshape(-1, 1,
|
||||
1) if current_step >= freeze_bn else
|
||||
x * (running_std / batch_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
|
||||
1))
|
||||
error = np.ones(shape=expect.shape) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
@ -80,9 +81,11 @@ def test_batchnrom_fold2():
|
|||
current_step = np.array([100000]).astype('int32')
|
||||
output = net(Tensor(x), Tensor(beta), Tensor(gamma), Tensor(batch_std), Tensor(batch_mean), Tensor(running_std),
|
||||
Tensor(running_mean), Tensor(current_step))
|
||||
expect = ((x + beta.reshape(-1, 1, 1) - (gamma * running_mean / running_std).reshape(-1, 1, 1)
|
||||
if current_step >= freeze_bn else x * (batch_std / running_std).reshape(-1, 1, 1) +
|
||||
(beta - gamma * batch_mean / batch_std).reshape(-1, 1, 1)))
|
||||
expect = (x + beta.reshape(-1, 1,
|
||||
1) - (gamma * running_mean / running_std).reshape(-1, 1,
|
||||
1) if current_step >= freeze_bn else
|
||||
x * (batch_std / running_std).reshape(-1, 1, 1) + (beta - gamma * batch_mean / batch_std).reshape(-1, 1,
|
||||
1))
|
||||
error = np.ones(shape=expect.shape) * 1.0e-6
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
|
|
@ -38,8 +38,8 @@ class Net(nn.Cell):
|
|||
|
||||
def np_result(d_batch_mean, d_batch_std, x, batch_mean, batch_std):
|
||||
n = x.shape[0] * x.shape[2] * x.shape[3]
|
||||
dx = (d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) *
|
||||
(x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n)
|
||||
dx = d_batch_mean.reshape(1, -1, 1, 1) / n + d_batch_std.reshape(1, -1, 1, 1) * (
|
||||
x - batch_mean.reshape(1, -1, 1, 1)) / batch_std.reshape(1, -1, 1, 1) / n
|
||||
return dx
|
||||
|
||||
|
||||
|
|
|
@ -172,8 +172,8 @@ class Grad(nn.Cell):
|
|||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, inputs, bias, dy):
|
||||
return self.grad(self.network)(inputs, bias, dy)
|
||||
def construct(self, input_, bias, dy):
|
||||
return self.grad(self.network)(input_, bias, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
|
|
@ -783,10 +783,6 @@ def test_grad():
|
|||
bidirectional = True
|
||||
dropout = 0.0
|
||||
|
||||
num_directions = 1
|
||||
if bidirectional:
|
||||
num_directions = 2
|
||||
|
||||
net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout))
|
||||
|
||||
dy = np.array([[[-3.5471e-01, 7.0540e-01, -7.5945e-01, -1.2322e+00],
|
||||
|
@ -804,7 +800,7 @@ def test_grad():
|
|||
[[-1.6032e+00, -1.8818e-01, 7.0441e-01, -2.8765e+00],
|
||||
[1.0065e-01, 9.2045e-01, 2.7426e-01, 2.6196e-01]]]).astype(np.float32)
|
||||
|
||||
dx, dh, dc, dw = net(Tensor(dy))
|
||||
dx, dh, dc, _ = net(Tensor(dy))
|
||||
expect_dx = np.array([[[0.01697153, -0.0096909, 0.01306139, 0.00863109, -0.00122794, -0.00746152, -0.00879683,
|
||||
0.00643571, 0.0015958, 0.01480642],
|
||||
[0.05794962, -0.02326604, 0.01862703, 0.02053947, 0.02607713, -0.01278067, 0.04250786,
|
||||
|
@ -964,12 +960,8 @@ def test_lstm_dropout():
|
|||
bidirectional = False
|
||||
dropout = 1.0
|
||||
|
||||
num_directions = 1
|
||||
if bidirectional:
|
||||
num_directions = 2
|
||||
|
||||
net = LstmNetWithDropout(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
|
||||
y, h, c, _, _ = net()
|
||||
y, _, _, _, _ = net()
|
||||
expect_y = np.array([[[-0.45210335, -0.0844336],
|
||||
[-0.14677924, 0.07140275]],
|
||||
|
||||
|
|
|
@ -178,7 +178,8 @@ def test_broadcast():
|
|||
expect_dx2 = np.array([[[[0., 4.250458, 2.5030296, 3.623167, 6.4171505, 7.2115746]],
|
||||
[[0., 4.367449, 2.803152, 2.5352, 0., 0.]],
|
||||
[[0.7087075, 0., 2.040332, 2.1372325, 0., 2.9222295]],
|
||||
[[1.0278877, 5.247942, 2.6855955, 5.494814, 3.5657988, 0.66265094]]]]).astype(np.float32)
|
||||
[[1.0278877, 5.247942, 2.6855955, 5.494814, 3.5657988,
|
||||
0.66265094]]]]).astype(np.float32)
|
||||
|
||||
net = Grad(MinimumNet())
|
||||
output_ms = net(Tensor(x1_np), Tensor(x2_np), Tensor(dy_np))
|
||||
|
|
|
@ -182,88 +182,88 @@ def test_ReduceSum():
|
|||
diff0 = abs(output[0].asnumpy() - expect0)
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert (output[0].shape() == expect0.shape)
|
||||
assert output[0].shape() == expect0.shape
|
||||
|
||||
expect1 = np.sum(x1, axis=axis1, keepdims=keep_dims1)
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert (output[1].shape() == expect1.shape)
|
||||
assert output[1].shape() == expect1.shape
|
||||
|
||||
expect2 = np.sum(x2, axis=axis2, keepdims=keep_dims2)
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert (output[2].shape() == expect2.shape)
|
||||
assert output[2].shape() == expect2.shape
|
||||
|
||||
expect3 = np.sum(x3, axis=axis3, keepdims=keep_dims3)
|
||||
diff3 = abs(output[3].asnumpy() - expect3)
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert (output[3].shape() == expect3.shape)
|
||||
assert output[3].shape() == expect3.shape
|
||||
|
||||
expect4 = np.sum(x4, axis=np_axis4, keepdims=keep_dims4)
|
||||
diff4 = abs(output[4].asnumpy() - expect4)
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert (output[4].shape() == expect4.shape)
|
||||
assert output[4].shape() == expect4.shape
|
||||
|
||||
expect5 = np.sum(x5, axis=np_axis5, keepdims=keep_dims5)
|
||||
diff5 = abs(output[5].asnumpy() - expect5)
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert (output[5].shape() == expect5.shape)
|
||||
assert output[5].shape() == expect5.shape
|
||||
|
||||
expect6 = np.sum(x6, axis=axis6, keepdims=keep_dims6)
|
||||
diff6 = abs(output[6].asnumpy() - expect6)
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert (output[6].shape() == expect6.shape)
|
||||
assert output[6].shape() == expect6.shape
|
||||
|
||||
expect7 = np.sum(x7, axis=axis7, keepdims=keep_dims7)
|
||||
diff7 = abs(output[7].asnumpy() - expect7)
|
||||
error7 = np.ones(shape=expect7.shape) * 1.0e-5
|
||||
assert np.all(diff7 < error7)
|
||||
assert (output[7].shape() == expect7.shape)
|
||||
assert output[7].shape() == expect7.shape
|
||||
|
||||
expect8 = np.sum(x8, axis=axis8, keepdims=keep_dims8)
|
||||
diff8 = abs(output[8].asnumpy() - expect8)
|
||||
error8 = np.ones(shape=expect8.shape) * 1.0e-5
|
||||
assert np.all(diff8 < error8)
|
||||
assert (output[8].shape() == expect8.shape)
|
||||
assert output[8].shape() == expect8.shape
|
||||
|
||||
expect9 = np.sum(x9, axis=axis9, keepdims=keep_dims9)
|
||||
diff9 = abs(output[9].asnumpy() - expect9)
|
||||
error9 = np.ones(shape=expect9.shape) * 1.0e-5
|
||||
assert np.all(diff9 < error9)
|
||||
assert (output[9].shape() == expect9.shape)
|
||||
assert output[9].shape() == expect9.shape
|
||||
|
||||
expect10 = np.sum(x10, axis=axis10, keepdims=keep_dims10)
|
||||
diff10 = abs(output[10].asnumpy() - expect10)
|
||||
error10 = np.ones(shape=expect10.shape) * 1.0e-5
|
||||
assert np.all(diff10 < error10)
|
||||
assert (output[10].shape() == expect10.shape)
|
||||
assert output[10].shape() == expect10.shape
|
||||
|
||||
expect11 = np.sum(x11, axis=axis11, keepdims=keep_dims11)
|
||||
diff11 = abs(output[11].asnumpy() - expect11)
|
||||
error11 = np.ones(shape=expect11.shape) * 1.0e-5
|
||||
assert np.all(diff11 < error11)
|
||||
assert (output[11].shape() == expect11.shape)
|
||||
assert output[11].shape() == expect11.shape
|
||||
|
||||
expect12 = np.sum(x12, axis=axis12, keepdims=keep_dims12)
|
||||
diff12 = abs(output[12].asnumpy() - expect12)
|
||||
error12 = np.ones(shape=expect12.shape) * 1.0e-5
|
||||
assert np.all(diff12 < error12)
|
||||
assert (output[12].shape() == expect12.shape)
|
||||
assert output[12].shape() == expect12.shape
|
||||
|
||||
expect13 = np.sum(x13, axis=axis13, keepdims=keep_dims13)
|
||||
diff13 = abs(output[13].asnumpy() - expect13)
|
||||
error13 = np.ones(shape=expect13.shape) * 1.0e-5
|
||||
assert np.all(diff13 < error13)
|
||||
assert (output[13].shape() == expect13.shape)
|
||||
assert output[13].shape() == expect13.shape
|
||||
|
||||
expect14 = np.sum(x14, axis=np_axis14, keepdims=keep_dims14)
|
||||
diff14 = abs(output[14].asnumpy() - expect14)
|
||||
error14 = np.ones(shape=expect14.shape) * 1.0e-5
|
||||
assert np.all(diff14 < error14)
|
||||
assert (output[14].shape() == expect14.shape)
|
||||
assert output[14].shape() == expect14.shape
|
||||
|
|
|
@ -19,7 +19,6 @@ import pytest
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
|
@ -42,7 +41,7 @@ def test_relu_grad():
|
|||
dy = Tensor(np.array([[[[1, 0, 1],
|
||||
[0, 1, 0],
|
||||
[1, 1, 1]]]]).astype(np.float32))
|
||||
expect = np.array([[[[0, 0, 1, ], [0, 0, 0, ], [1, 1, 0.]]]]).astype(np.float32)
|
||||
expect = np.array([[[[0, 0, 1,], [0, 0, 0,], [1, 1, 0.]]]]).astype(np.float32)
|
||||
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
|
|
@ -20,6 +20,7 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class NetSoftmaxCrossEntropyWithLogits(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSoftmaxCrossEntropyWithLogits, self).__init__()
|
||||
|
|
|
@ -20,6 +20,7 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class NetSparseSoftmaxCrossEntropyWithLogits(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSparseSoftmaxCrossEntropyWithLogits, self).__init__()
|
||||
|
|
|
@ -36,8 +36,7 @@ class NetRMSProp(nn.Cell):
|
|||
def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
|
||||
if self.use_centered:
|
||||
return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
|
||||
else:
|
||||
return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
|
||||
return self.rms_opt(var, rms, mom, lr, g, decay, momentum, epsilon)
|
||||
|
||||
|
||||
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
||||
|
|
|
@ -26,7 +26,8 @@ from mindspore.common import dtype as mstype
|
|||
from mindspore.nn import Cell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import prim_attr_register
|
||||
from mindspore.ops.primitive import Primitive, PrimitiveWithInfer
|
||||
from mindspore.ops.primitive import PrimitiveWithInfer
|
||||
import mindspore.context as context
|
||||
from ..ut_filter import non_graph_engine
|
||||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
|
@ -305,8 +306,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
||||
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
|
|
|
@ -13,26 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test ops """
|
||||
import functools
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.composite as C
|
||||
from mindspore import Tensor
|
||||
from mindspore import ops
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from ..ut_filter import non_graph_engine
|
||||
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
|
||||
pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
|
||||
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
|
||||
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
|
||||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception
|
||||
|
||||
|
||||
class ExpandDimsNet(nn.Cell):
|
||||
|
|
|
@ -17,6 +17,7 @@ import functools
|
|||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.common.parameter import ParameterTuple
|
||||
from mindspore.ops import composite as C
|
||||
|
@ -89,8 +90,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
||||
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
|
|
|
@ -42,10 +42,10 @@ def cond_data_test(x_init, y_init):
|
|||
|
||||
def construct(self, x, y):
|
||||
cond = self.less(x, y)
|
||||
st1, sf1 = self.switch(x, cond)
|
||||
st2, sf2 = self.switch(y, cond)
|
||||
st1, _ = self.switch(x, cond)
|
||||
st2, _ = self.switch(y, cond)
|
||||
add_ret = self.add(st1, st2)
|
||||
st3, sf3 = self.switch(self.value, cond)
|
||||
_, sf3 = self.switch(self.value, cond)
|
||||
sq_ret = self.square(sf3)
|
||||
ret = self.merge((add_ret, sq_ret))
|
||||
return ret[0]
|
||||
|
@ -125,7 +125,7 @@ def test_if_str_is_not_none_right():
|
|||
self.z = z
|
||||
|
||||
def construct(self, x, y):
|
||||
if self.z == None:
|
||||
if self.z is None:
|
||||
ret = x
|
||||
else:
|
||||
ret = y
|
||||
|
@ -146,7 +146,7 @@ def test_if_str_is_not_none_left():
|
|||
self.z = z
|
||||
|
||||
def construct(self, x, y):
|
||||
if None == self.z:
|
||||
if self.z is None:
|
||||
ret = x
|
||||
else:
|
||||
ret = y
|
||||
|
@ -167,7 +167,7 @@ def test_if_none_equal_none():
|
|||
self.z = z
|
||||
|
||||
def construct(self, x, y):
|
||||
if self.z == None:
|
||||
if self.z is None:
|
||||
ret = x
|
||||
else:
|
||||
ret = y
|
||||
|
|
|
@ -16,6 +16,7 @@ import functools
|
|||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from ..ut_filter import non_graph_engine
|
||||
|
@ -132,7 +133,7 @@ def test_list_append_2():
|
|||
|
||||
|
||||
class ListOperate(nn.Cell):
|
||||
def __init__(self, ):
|
||||
def __init__(self,):
|
||||
super(ListOperate, self).__init__()
|
||||
|
||||
def construct(self, t, l):
|
||||
|
@ -211,9 +212,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
||||
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
def test_exec():
|
||||
|
|
|
@ -22,9 +22,7 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from ..ut_filter import non_graph_engine
|
||||
|
@ -306,8 +304,8 @@ class NetWithLossCumSum(nn.Cell):
|
|||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, input):
|
||||
predict = self.network(input)
|
||||
def construct(self, input_):
|
||||
predict = self.network(input_)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
|
@ -318,8 +316,8 @@ class GradWrapCumSum(nn.Cell):
|
|||
super(GradWrapCumSum, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, input):
|
||||
return C.grad(self.network)(input)
|
||||
def construct(self, input_):
|
||||
return C.grad(self.network)(input_)
|
||||
|
||||
|
||||
class NetCumSum(nn.Cell):
|
||||
|
@ -330,8 +328,8 @@ class NetCumSum(nn.Cell):
|
|||
self.cumsum = P.CumSum()
|
||||
self.axis = 1
|
||||
|
||||
def construct(self, input):
|
||||
return self.cumsum(input, self.axis)
|
||||
def construct(self, input_):
|
||||
return self.cumsum(input_, self.axis)
|
||||
|
||||
|
||||
class SignNet(nn.Cell):
|
||||
|
@ -444,9 +442,6 @@ test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|||
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
||||
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
def test_exec():
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue