forked from mindspore-Ecosystem/mindspore
modify deeplabv3
This commit is contained in:
parent
8aae0a18c7
commit
ec7cbb9929
|
@ -0,0 +1,58 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""evaluation."""
|
||||
import os, time
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.communication.management import init
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore import Model, ParallelMode
|
||||
import argparse
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.train.callback import Callback,CheckpointConfig, ModelCheckpoint, TimeMonitor
|
||||
from src.md_dataset import create_dataset
|
||||
from src.losses import OhemLoss
|
||||
from src.miou_precision import MiouPrecision
|
||||
from src.deeplabv3 import deeplabv3_resnet50
|
||||
from src.config import config
|
||||
parser = argparse.ArgumentParser(description="Deeplabv3 evaluation")
|
||||
parser.add_argument('--epoch_size', type=int, default=2, help='Epoch size.')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size.')
|
||||
parser.add_argument('--data_url', required=True, default=None, help='Train data url')
|
||||
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
|
||||
|
||||
args_opt = parser.parse_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
||||
print(args_opt)
|
||||
if __name__ == "__main__":
|
||||
args_opt.crop_size = config.crop_size
|
||||
args_opt.base_size = config.crop_size
|
||||
eval_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="eval")
|
||||
net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size,3,args_opt.crop_size,args_opt.crop_size],
|
||||
infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates,
|
||||
decoder_output_stride=config.decoder_output_stride, output_stride = config.output_stride,
|
||||
fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid = config.image_pyramid)
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_url)
|
||||
load_param_into_net(net, param_dict)
|
||||
mIou = MiouPrecision(config.seg_num_classes)
|
||||
metrics={'mIou':mIou}
|
||||
loss = OhemLoss(config.seg_num_classes, config.ignore_label)
|
||||
model = Model(net, loss, metrics=metrics)
|
||||
model.eval(eval_dataset)
|
|
@ -12,3 +12,13 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Init DeepLabv3."""
|
||||
from .deeplabv3 import ASPP, DeepLabV3, deeplabv3_resnet50
|
||||
from . import backbone
|
||||
from .backbone import *
|
||||
|
||||
__all__ = [
|
||||
"ASPP", "DeepLabV3", "deeplabv3_resnet50", "Decoder"
|
||||
]
|
||||
|
||||
__all__.extend(backbone.__all__)
|
||||
|
|
|
@ -0,0 +1,534 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ResNet based DeepLab."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import Tensor
|
||||
import numpy as np
|
||||
from mindspore.common.initializer import TruncatedNormal, initializer
|
||||
from mindspore._checkparam import check_bool, twice
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.parameter import Parameter
|
||||
def _conv_bn_relu(in_channel,
|
||||
out_channel,
|
||||
ksize,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
pad_mode="pad",
|
||||
use_batch_statistics=False):
|
||||
"""Get a conv2d -> batchnorm -> relu layer"""
|
||||
return nn.SequentialCell(
|
||||
[nn.Conv2d(in_channel,
|
||||
out_channel,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
pad_mode=pad_mode),
|
||||
nn.BatchNorm2d(out_channel, use_batch_statistics=use_batch_statistics),
|
||||
nn.ReLU()]
|
||||
)
|
||||
def _deep_conv_bn_relu(in_channel,
|
||||
channel_multiplier,
|
||||
ksize,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
pad_mode="pad",
|
||||
use_batch_statistics=False):
|
||||
"""Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer"""
|
||||
return nn.SequentialCell(
|
||||
[DepthwiseConv2dNative(in_channel,
|
||||
channel_multiplier,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
pad_mode=pad_mode),
|
||||
nn.BatchNorm2d(channel_multiplier * in_channel, use_batch_statistics=use_batch_statistics),
|
||||
nn.ReLU()]
|
||||
)
|
||||
def _stob_deep_conv_btos_bn_relu(in_channel,
|
||||
channel_multiplier,
|
||||
ksize,
|
||||
space_to_batch_block_shape,
|
||||
batch_to_space_block_shape,
|
||||
paddings,
|
||||
crops,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
pad_mode="pad",
|
||||
use_batch_statistics=False):
|
||||
"""Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer"""
|
||||
return nn.SequentialCell(
|
||||
[SpaceToBatch(space_to_batch_block_shape,paddings),
|
||||
DepthwiseConv2dNative(in_channel,
|
||||
channel_multiplier,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
pad_mode=pad_mode),
|
||||
BatchToSpace(batch_to_space_block_shape,crops),
|
||||
nn.BatchNorm2d(channel_multiplier * in_channel, use_batch_statistics=use_batch_statistics),
|
||||
nn.ReLU()]
|
||||
)
|
||||
def _stob_conv_btos_bn_relu(in_channel,
|
||||
out_channel,
|
||||
ksize,
|
||||
space_to_batch_block_shape,
|
||||
batch_to_space_block_shape,
|
||||
paddings,
|
||||
crops,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
pad_mode="pad",
|
||||
use_batch_statistics=False):
|
||||
"""Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer"""
|
||||
return nn.SequentialCell(
|
||||
[SpaceToBatch(space_to_batch_block_shape,paddings),
|
||||
nn.Conv2d(in_channel,
|
||||
out_channel,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
pad_mode=pad_mode),
|
||||
BatchToSpace(batch_to_space_block_shape,crops),
|
||||
nn.BatchNorm2d(out_channel,use_batch_statistics=use_batch_statistics),
|
||||
nn.ReLU()]
|
||||
)
|
||||
def _make_layer(block,
|
||||
in_channels,
|
||||
out_channels,
|
||||
num_blocks,
|
||||
stride=1,
|
||||
rate=1,
|
||||
multi_grads=None,
|
||||
output_stride=None,
|
||||
g_current_stride=2,
|
||||
g_rate=1):
|
||||
"""Make layer for DeepLab-ResNet network."""
|
||||
if multi_grads is None:
|
||||
multi_grads = [1] * num_blocks
|
||||
# (stride == 2, num_blocks == 4 --> strides == [1, 1, 1, 2])
|
||||
strides = [1] * (num_blocks - 1) + [stride]
|
||||
blocks = []
|
||||
if output_stride is not None:
|
||||
if output_stride % 4 != 0:
|
||||
raise ValueError('The output_stride needs to be a multiple of 4.')
|
||||
output_stride //= 4
|
||||
for i_stride, _ in enumerate(strides):
|
||||
if output_stride is not None and g_current_stride > output_stride:
|
||||
raise ValueError('The target output_stride cannot be reached.')
|
||||
if output_stride is not None and g_current_stride == output_stride:
|
||||
b_rate = g_rate
|
||||
b_stride = 1
|
||||
g_rate *= strides[i_stride]
|
||||
else:
|
||||
b_rate = rate
|
||||
b_stride = strides[i_stride]
|
||||
g_current_stride *= strides[i_stride]
|
||||
blocks.append(block(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
stride=b_stride,
|
||||
rate=b_rate,
|
||||
multi_grad=multi_grads[i_stride]))
|
||||
in_channels = out_channels
|
||||
layer = nn.SequentialCell(blocks)
|
||||
return layer, g_current_stride, g_rate
|
||||
class Subsample(nn.Cell):
|
||||
"""
|
||||
Subsample for DeepLab-ResNet.
|
||||
Args:
|
||||
factor (int): Sample factor.
|
||||
Returns:
|
||||
Tensor, the sub sampled tensor.
|
||||
Examples:
|
||||
>>> Subsample(2)
|
||||
"""
|
||||
def __init__(self, factor):
|
||||
super(Subsample, self).__init__()
|
||||
self.factor = factor
|
||||
self.pool = nn.MaxPool2d(kernel_size=1,
|
||||
stride=factor)
|
||||
def construct(self, x):
|
||||
if self.factor == 1:
|
||||
return x
|
||||
return self.pool(x)
|
||||
class SpaceToBatch(nn.Cell):
|
||||
def __init__(self, block_shape, paddings):
|
||||
super(SpaceToBatch, self).__init__()
|
||||
self.space_to_batch = P.SpaceToBatch(block_shape, paddings)
|
||||
self.bs = block_shape
|
||||
self.pd = paddings
|
||||
def construct(self, x):
|
||||
return self.space_to_batch(x)
|
||||
class BatchToSpace(nn.Cell):
|
||||
def __init__(self, block_shape, crops):
|
||||
super(BatchToSpace, self).__init__()
|
||||
self.batch_to_space = P.BatchToSpace(block_shape, crops)
|
||||
self.bs = block_shape
|
||||
self.cr = crops
|
||||
def construct(self, x):
|
||||
return self.batch_to_space(x)
|
||||
class _DepthwiseConv2dNative(nn.Cell):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
channel_multiplier,
|
||||
kernel_size,
|
||||
stride,
|
||||
pad_mode,
|
||||
padding,
|
||||
dilation,
|
||||
group,
|
||||
weight_init):
|
||||
super(_DepthwiseConv2dNative, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.channel_multiplier = channel_multiplier
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.pad_mode = pad_mode
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.group = group
|
||||
if not (isinstance(in_channels, int) and in_channels > 0):
|
||||
raise ValueError('Attr \'in_channels\' of \'DepthwiseConv2D\' Op passed '
|
||||
+ str(in_channels) + ', should be a int and greater than 0.')
|
||||
if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \
|
||||
(not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
||||
kernel_size[0] < 1 or kernel_size[1] < 1:
|
||||
raise ValueError('Attr \'kernel_size\' of \'DepthwiseConv2D\' Op passed '
|
||||
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
|
||||
self.weight = Parameter(initializer(weight_init, [1, in_channels // group, *kernel_size]),
|
||||
name='weight')
|
||||
def construct(self, *inputs):
|
||||
"""Must be overridden by all subclasses."""
|
||||
raise NotImplementedError
|
||||
class DepthwiseConv2dNative(_DepthwiseConv2dNative):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
channel_multiplier,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
pad_mode='same',
|
||||
padding=0,
|
||||
dilation=1,
|
||||
group=1,
|
||||
weight_init='normal'):
|
||||
kernel_size = twice(kernel_size)
|
||||
super(DepthwiseConv2dNative, self).__init__(
|
||||
in_channels,
|
||||
channel_multiplier,
|
||||
kernel_size,
|
||||
stride,
|
||||
pad_mode,
|
||||
padding,
|
||||
dilation,
|
||||
group,
|
||||
weight_init)
|
||||
self.depthwise_conv2d_native = P.DepthwiseConv2dNative(channel_multiplier=self.channel_multiplier,
|
||||
kernel_size=self.kernel_size,
|
||||
mode=3,
|
||||
pad_mode=self.pad_mode,
|
||||
pad=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
group=self.group)
|
||||
def set_strategy(self, strategy):
|
||||
self.depthwise_conv2d_native.set_strategy(strategy)
|
||||
return self
|
||||
def construct(self, x):
|
||||
return self.depthwise_conv2d_native(x, self.weight)
|
||||
class BottleneckV1(nn.Cell):
|
||||
"""
|
||||
ResNet V1 BottleneckV1 block definition.
|
||||
Args:
|
||||
in_channels (int): Input channel.
|
||||
out_channels (int): Output channel.
|
||||
stride (int): Stride size for the initial convolutional layer. Default: 1.
|
||||
rate (int): Rate for convolution. Default: 1.
|
||||
multi_grad (int): Employ a rate within network. Default: 1.
|
||||
Returns:
|
||||
Tensor, the ResNet unit's output.
|
||||
Examples:
|
||||
>>> BottleneckV1(3,256,stride=2)
|
||||
"""
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
use_batch_statistics=False,
|
||||
use_batch_to_stob_and_btos=False):
|
||||
super(BottleneckV1, self).__init__()
|
||||
expansion = 4
|
||||
mid_channels = out_channels // expansion
|
||||
self.conv_bn1 = _conv_bn_relu(in_channels,
|
||||
mid_channels,
|
||||
ksize=1,
|
||||
stride=1,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
self.conv_bn2 = _conv_bn_relu(mid_channels,
|
||||
mid_channels,
|
||||
ksize=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
dilation=1,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
if use_batch_to_stob_and_btos == True:
|
||||
self.conv_bn2 = _stob_conv_btos_bn_relu(mid_channels,
|
||||
mid_channels,
|
||||
ksize=3,
|
||||
stride=stride,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
space_to_batch_block_shape = 2,
|
||||
batch_to_space_block_shape = 2,
|
||||
paddings =[[2, 3], [2, 3]],
|
||||
crops =[[0, 1], [0, 1]],
|
||||
pad_mode="valid",
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
|
||||
self.conv3 = nn.Conv2d(mid_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1)
|
||||
self.bn3 = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
if in_channels != out_channels:
|
||||
conv = nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=stride)
|
||||
bn = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
self.downsample = nn.SequentialCell([conv, bn])
|
||||
else:
|
||||
self.downsample = Subsample(stride)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = nn.ReLU()
|
||||
self.Reshape = P.Reshape()
|
||||
def construct(self, x):
|
||||
out = self.conv_bn1(x)
|
||||
out = self.conv_bn2(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
out = self.add(out, self.downsample(x))
|
||||
out = self.relu(out)
|
||||
return out
|
||||
return out
|
||||
|
||||
class BottleneckV2(nn.Cell):
|
||||
"""
|
||||
ResNet V2 Bottleneck variance V2 block definition.
|
||||
Args:
|
||||
in_channels (int): Input channel.
|
||||
out_channels (int): Output channel.
|
||||
stride (int): Stride size for the initial convolutional layer. Default: 1.
|
||||
Returns:
|
||||
Tensor, the ResNet unit's output.
|
||||
Examples:
|
||||
>>> BottleneckV2(3,256,stride=2)
|
||||
"""
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
use_batch_statistics=False,
|
||||
use_batch_to_stob_and_btos=False,
|
||||
dilation=1):
|
||||
super(BottleneckV2, self).__init__()
|
||||
expansion = 4
|
||||
mid_channels = out_channels // expansion
|
||||
self.conv_bn1 = _conv_bn_relu(in_channels,
|
||||
mid_channels,
|
||||
ksize=1,
|
||||
stride=1,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
self.conv_bn2 = _conv_bn_relu(mid_channels,
|
||||
mid_channels,
|
||||
ksize=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
dilation=dilation,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
if use_batch_to_stob_and_btos == True:
|
||||
self.conv_bn2 = _stob_conv_btos_bn_relu(mid_channels,
|
||||
mid_channels,
|
||||
ksize=3,
|
||||
stride=stride,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
space_to_batch_block_shape = 2,
|
||||
batch_to_space_block_shape = 2,
|
||||
paddings =[[2, 3], [2, 3]],
|
||||
crops =[[0, 1], [0, 1]],
|
||||
pad_mode="valid",
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
self.conv3 = nn.Conv2d(mid_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1)
|
||||
self.bn3 = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
if in_channels != out_channels:
|
||||
conv = nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=stride)
|
||||
bn = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
self.downsample = nn.SequentialCell([conv, bn])
|
||||
else:
|
||||
self.downsample = Subsample(stride)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = nn.ReLU()
|
||||
def construct(self, x):
|
||||
out = self.conv_bn1(x)
|
||||
out = self.conv_bn2(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
out = self.add(out, x)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
class BottleneckV3(nn.Cell):
|
||||
"""
|
||||
ResNet V1 Bottleneck variance V1 block definition.
|
||||
Args:
|
||||
in_channels (int): Input channel.
|
||||
out_channels (int): Output channel.
|
||||
stride (int): Stride size for the initial convolutional layer. Default: 1.
|
||||
Returns:
|
||||
Tensor, the ResNet unit's output.
|
||||
Examples:
|
||||
>>> BottleneckV3(3,256,stride=2)
|
||||
"""
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=1,
|
||||
use_batch_statistics=False):
|
||||
super(BottleneckV3, self).__init__()
|
||||
expansion = 4
|
||||
mid_channels = out_channels // expansion
|
||||
self.conv_bn1 = _conv_bn_relu(in_channels,
|
||||
mid_channels,
|
||||
ksize=1,
|
||||
stride=1,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
self.conv_bn2 = _conv_bn_relu(mid_channels,
|
||||
mid_channels,
|
||||
ksize=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
dilation=1,
|
||||
use_batch_statistics=use_batch_statistics)
|
||||
self.conv3 = nn.Conv2d(mid_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1)
|
||||
self.bn3 = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
|
||||
if in_channels != out_channels:
|
||||
conv = nn.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=stride)
|
||||
bn = nn.BatchNorm2d(out_channels,use_batch_statistics=use_batch_statistics)
|
||||
self.downsample = nn.SequentialCell([conv, bn])
|
||||
else:
|
||||
self.downsample = Subsample(stride)
|
||||
self.downsample = Subsample(stride)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = nn.ReLU()
|
||||
def construct(self, x):
|
||||
out = self.conv_bn1(x)
|
||||
out = self.conv_bn2(out)
|
||||
out = self.bn3(self.conv3(out))
|
||||
out = self.add(out, self.downsample(x))
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
class ResNetV1(nn.Cell):
|
||||
"""
|
||||
ResNet V1 for DeepLab.
|
||||
Args:
|
||||
Returns:
|
||||
Tuple, output tensor tuple, (c2,c5).
|
||||
Examples:
|
||||
>>> ResNetV1(False)
|
||||
"""
|
||||
def __init__(self, fine_tune_batch_norm=False):
|
||||
super(ResNetV1, self).__init__()
|
||||
self.layer_root = nn.SequentialCell(
|
||||
[RootBlockBeta(fine_tune_batch_norm),
|
||||
nn.MaxPool2d(kernel_size=(3,3),
|
||||
stride=(2,2),
|
||||
#padding=1,
|
||||
pad_mode='same')])
|
||||
self.layer1_1 = BottleneckV1(128, 256, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer1_2 = BottleneckV2(256, 256, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer1_3 = BottleneckV3(256, 256, stride=2, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer2_1 = BottleneckV1(256, 512, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer2_2 = BottleneckV2(512, 512, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer2_3 = BottleneckV2(512, 512, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer2_4 = BottleneckV3(512, 512, stride=2, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_1 = BottleneckV1(512, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_2 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_3 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_4 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_5 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer3_6 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm)
|
||||
|
||||
self.layer4_1 = BottleneckV1(1024, 2048, stride=1, use_batch_to_stob_and_btos=True, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer4_2 = BottleneckV2(2048, 2048, stride=1, use_batch_to_stob_and_btos=True, use_batch_statistics=fine_tune_batch_norm)
|
||||
self.layer4_3 = BottleneckV2(2048, 2048, stride=1, use_batch_to_stob_and_btos=True, use_batch_statistics=fine_tune_batch_norm)
|
||||
def construct(self, x):
|
||||
x = self.layer_root(x)
|
||||
x = self.layer1_1(x)
|
||||
c2 = self.layer1_2(x)
|
||||
x = self.layer1_3(c2)
|
||||
x = self.layer2_1(x)
|
||||
x = self.layer2_2(x)
|
||||
x = self.layer2_3(x)
|
||||
x = self.layer2_4(x)
|
||||
x = self.layer3_1(x)
|
||||
x = self.layer3_2(x)
|
||||
x = self.layer3_3(x)
|
||||
x = self.layer3_4(x)
|
||||
x = self.layer3_5(x)
|
||||
x = self.layer3_6(x)
|
||||
|
||||
x = self.layer4_1(x)
|
||||
x = self.layer4_2(x)
|
||||
c5 = self.layer4_3(x)
|
||||
return c2, c5
|
||||
class RootBlockBeta(nn.Cell):
|
||||
"""
|
||||
ResNet V1 beta root block definition.
|
||||
Returns:
|
||||
Tensor, the block unit's output.
|
||||
Examples:
|
||||
>>> RootBlockBeta()
|
||||
"""
|
||||
def __init__(self, fine_tune_batch_norm=False):
|
||||
super(RootBlockBeta, self).__init__()
|
||||
self.conv1 = _conv_bn_relu(3, 64, ksize=3, stride=2, padding=0, pad_mode="valid", use_batch_statistics=fine_tune_batch_norm)
|
||||
self.conv2 = _conv_bn_relu(64, 64, ksize=3, stride=1, padding=0, pad_mode="same", use_batch_statistics=fine_tune_batch_norm)
|
||||
self.conv3 = _conv_bn_relu(64, 128, ksize=3, stride=1, padding=0, pad_mode="same", use_batch_statistics=fine_tune_batch_norm)
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
return x
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and evaluation.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config = ed({
|
||||
"learning_rate": 0.0014,
|
||||
"weight_decay": 0.00005,
|
||||
"momentum": 0.97,
|
||||
"crop_size": 513,
|
||||
"eval_scales": [0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
"atrous_rates": None,
|
||||
"image_pyramid": None,
|
||||
"output_stride": 16,
|
||||
"fine_tune_batch_norm": False,
|
||||
"ignore_label": 255,
|
||||
"decoder_output_stride": None,
|
||||
"seg_num_classes": 21
|
||||
})
|
|
@ -0,0 +1,69 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""OhemLoss."""
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
|
||||
class OhemLoss(nn.Cell):
|
||||
def __init__(self, num, ignore_label):
|
||||
super(OhemLoss, self).__init__()
|
||||
self.mul = P.Mul()
|
||||
self.shape = P.Shape()
|
||||
self.one_hot = nn.OneHot(-1, num, 1.0, 0.0)
|
||||
self.squeeze = P.Squeeze()
|
||||
self.num = num
|
||||
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean()
|
||||
self.select = P.Select()
|
||||
self.reshape = P.Reshape()
|
||||
self.cast = P.Cast()
|
||||
self.not_equal = P.NotEqual()
|
||||
self.equal = P.Equal()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||
self.fill = P.Fill()
|
||||
self.transpose = P.Transpose()
|
||||
self.ignore_label = ignore_label
|
||||
self.loss_weight = 1.0
|
||||
|
||||
def construct(self, logits, labels):
|
||||
logits = self.transpose(logits,(0,2,3,1))
|
||||
logits = self.reshape(logits, (-1,self.num))
|
||||
labels = F.cast(labels,mstype.int32)
|
||||
labels = self.reshape(labels, (-1,))
|
||||
one_hot_labels = self.one_hot(labels)
|
||||
losses = self.cross_entropy(logits, one_hot_labels)[0]
|
||||
weights = self.cast(self.not_equal(labels,self.ignore_label),mstype.float32) * self.loss_weight
|
||||
weighted_losses = self.mul(losses, weights)
|
||||
loss = self.reduce_sum(weighted_losses,(0,))
|
||||
zeros = self.fill(mstype.float32, self.shape(weights), 0.0)
|
||||
ones = self.fill(mstype.float32, self.shape(weights), 1.0)
|
||||
present = self.select(
|
||||
self.equal(weights, zeros),
|
||||
zeros,
|
||||
ones)
|
||||
present = self.reduce_sum(present,(0,))
|
||||
|
||||
zeros = self.fill(mstype.float32, self.shape(present), 0.0)
|
||||
min_control = self.fill(mstype.float32, self.shape(present), 1.0)
|
||||
present = self.select(
|
||||
self.equal(present, zeros),
|
||||
min_control,
|
||||
present)
|
||||
loss = loss / present
|
||||
return loss
|
|
@ -0,0 +1,65 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""mIou."""
|
||||
import numpy as np
|
||||
from mindspore.nn.metrics.metric import Metric
|
||||
def confuse_matrix(target, pred, n):
|
||||
k = (target >= 0) & (target < n)
|
||||
return np.bincount(n * target[k].astype(int) + pred[k], minlength=n ** 2).reshape(n, n)
|
||||
def iou(hist):
|
||||
denominator = hist.sum(1) + hist.sum(0) - np.diag(hist)
|
||||
res = np.diag(hist) / np.where(denominator > 0, denominator, 1)
|
||||
res = np.sum(res) / np.count_nonzero(denominator)
|
||||
return res
|
||||
class MiouPrecision(Metric):
|
||||
def __init__(self, num_class=21):
|
||||
super(MiouPrecision, self).__init__()
|
||||
if not isinstance(num_class, int):
|
||||
raise TypeError('num_class should be integer type, but got {}'.format(type(num_class)))
|
||||
if num_class < 1:
|
||||
raise ValueError('num_class must be at least 1, but got {}'.format(num_class))
|
||||
self._num_class = num_class
|
||||
self._mIoU=[]
|
||||
self.clear()
|
||||
def clear(self):
|
||||
self._hist = np.zeros((self._num_class, self._num_class))
|
||||
self._mIoU=[]
|
||||
def update(self, *inputs):
|
||||
if len(inputs) != 2:
|
||||
raise ValueError('Need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
|
||||
predict_in = self._convert_data(inputs[0])
|
||||
label_in = self._convert_data(inputs[1])
|
||||
if predict_in.shape[1] != self._num_class:
|
||||
raise ValueError('Class number not match, last input data contain {} classes, but current data contain {} '
|
||||
'classes'.format(self._num_class, predict_in.shape[1]))
|
||||
batch_size = predict_in.shape[0]
|
||||
pred = np.argmax(predict_in,axis=1)
|
||||
label = label_in
|
||||
if len(label.flatten()) != len(pred.flatten()):
|
||||
print('Skipping: len(gt) = {:d}, len(pred) = {:d}'.format(len(label.flatten()), len(pred.flatten())))
|
||||
raise ValueError('Class number not match, last input data contain {} classes, but current data contain {} '
|
||||
'classes'.format(self._num_class, predict_in.shape[1]))
|
||||
self._hist = confuse_matrix(label.flatten(), pred.flatten(), self._num_class)
|
||||
mIoUs = iou(self._hist)
|
||||
self._mIoU.append(mIoUs)
|
||||
|
||||
def eval(self):
|
||||
"""
|
||||
Computes the mIoU categorical accuracy.
|
||||
"""
|
||||
mIoU=np.nanmean(self._mIoU)
|
||||
print('mIoU = {}'.format(mIoU))
|
||||
return mIoU
|
|
@ -0,0 +1,15 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
|
@ -0,0 +1,36 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
|
||||
|
||||
def _is_obs(url):
|
||||
return url.startswith("obs://") or url.startswith("s3://")
|
||||
|
||||
|
||||
def read(url, binary=False):
|
||||
if _is_obs(url):
|
||||
# TODO read cloud file.
|
||||
return None
|
||||
|
||||
with open(url, "rb" if binary else "r") as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def walk(url):
|
||||
if _is_obs(url):
|
||||
# TODO read cloud file.
|
||||
return None
|
||||
return os.walk(url)
|
|
@ -0,0 +1,99 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train."""
|
||||
import os, time
|
||||
import argparse
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.communication.management import init
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore import Model, ParallelMode
|
||||
import argparse
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.train.callback import Callback,CheckpointConfig, ModelCheckpoint, TimeMonitor
|
||||
from src.md_dataset import create_dataset
|
||||
from src.losses import OhemLoss
|
||||
from src.deeplabv3 import deeplabv3_resnet50
|
||||
from src.config import config
|
||||
|
||||
parser = argparse.ArgumentParser(description="Deeplabv3 training")
|
||||
parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
|
||||
parser.add_argument('--epoch_size', type=int, default=2, help='Epoch size.')
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size.')
|
||||
parser.add_argument('--data_url', required=True, default=None, help='Train data url')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
||||
parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path')
|
||||
parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.")
|
||||
parser.add_argument('--max_checkpoint_num', type=int, default=5, help='Max checkpoint number.')
|
||||
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
|
||||
"default is 1000.")
|
||||
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
|
||||
args_opt = parser.parse_args()
|
||||
print(args_opt)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
||||
class LossCallBack(Callback):
|
||||
"""
|
||||
Monitor the loss in training.
|
||||
Note:
|
||||
if per_print_times is 0 do not print loss.
|
||||
Args:
|
||||
per_print_times (int): Print loss every times. Default: 1.
|
||||
"""
|
||||
def __init__(self, per_print_times=1):
|
||||
super(LossCallBack, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
raise ValueError("print_step must be int and >= 0")
|
||||
self._per_print_times = per_print_times
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
|
||||
str(cb_params.net_outputs)))
|
||||
def model_fine_tune(flags, net, fix_weight_layer):
|
||||
checkpoint_path = flags.checkpoint_url
|
||||
if checkpoint_path is None:
|
||||
return
|
||||
param_dict = load_checkpoint(checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
for para in net.trainable_params():
|
||||
if fix_weight_layer in para.name:
|
||||
para.requires_grad=False
|
||||
if __name__ == "__main__":
|
||||
if args_opt.distribute == "true":
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
|
||||
init()
|
||||
args_opt.base_size = config.crop_size
|
||||
args_opt.crop_size = config.crop_size
|
||||
train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train")
|
||||
dataset_size = train_dataset.get_dataset_size()
|
||||
time_cb = TimeMonitor(data_size=dataset_size)
|
||||
callback = [time_cb, LossCallBack()]
|
||||
if args_opt.enable_save_ckpt == "true":
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
|
||||
keep_checkpoint_max=args_opt.save_checkpoint_num)
|
||||
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck)
|
||||
callback.append(ckpoint_cb)
|
||||
net = deeplabv3_resnet50(crop_size.seg_num_classes, [args_opt.batch_size,3,args_opt.crop_size,args_opt.crop_size],
|
||||
infer_scale_sizes=crop_size.eval_scales, atrous_rates=crop_size.atrous_rates,
|
||||
decoder_output_stride=crop_size.decoder_output_stride, output_stride = crop_size.output_stride,
|
||||
fine_tune_batch_norm=crop_size.fine_tune_batch_norm, image_pyramid = crop_size.image_pyramid)
|
||||
net.set_train()
|
||||
model_fine_tune(args_opt, net, 'layer')
|
||||
loss = OhemLoss(crop_size.seg_num_classes, crop_size.ignore_label)
|
||||
opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=args_opt.learning_rate, momentum=args_opt.momentum, weight_decay=args_opt.weight_decay)
|
||||
model = Model(net, loss, opt)
|
||||
model.train(args_opt.epoch_size, train_dataset, callback)
|
Loading…
Reference in New Issue