forked from mindspore-Ecosystem/mindspore
remove import probability from nn/__init__.py
This commit is contained in:
parent
6f70146153
commit
e94d91ba95
|
@ -24,7 +24,6 @@ from .loss import *
|
|||
from .optim import *
|
||||
from .metrics import *
|
||||
from .wrap import *
|
||||
from .probability import *
|
||||
|
||||
|
||||
__all__ = ["Cell", "GraphKernel"]
|
||||
|
@ -33,7 +32,7 @@ __all__.extend(loss.__all__)
|
|||
__all__.extend(optim.__all__)
|
||||
__all__.extend(metrics.__all__)
|
||||
__all__.extend(wrap.__all__)
|
||||
__all__.extend(probability.__all__)
|
||||
|
||||
|
||||
|
||||
__all__.sort()
|
||||
|
|
|
@ -15,10 +15,7 @@
|
|||
"""
|
||||
Probability.
|
||||
|
||||
The high-level components(Distributions) used to construct the probabilistic network.
|
||||
The high-level components used to construct the probabilistic network.
|
||||
"""
|
||||
|
||||
from .distribution import *
|
||||
|
||||
__all__ = []
|
||||
__all__.extend(distribution.__all__)
|
||||
from . import distribution
|
||||
|
|
|
@ -12,11 +12,12 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for bernoulli distribution"""
|
||||
"""test cases for Bernoulli distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
@ -29,7 +30,7 @@ class Prob(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -54,7 +55,7 @@ class LogProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -78,7 +79,7 @@ class KL(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -104,7 +105,7 @@ class Basics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.b = nn.Bernoulli([0.3, 0.5, 0.7], dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli([0.3, 0.5, 0.7], dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -130,7 +131,7 @@ class Sampling(nn.Cell):
|
|||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.b = nn.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
|
@ -152,7 +153,7 @@ class CDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -177,7 +178,7 @@ class LogCDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -202,7 +203,7 @@ class SF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -227,7 +228,7 @@ class LogSF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -251,7 +252,7 @@ class EntropyH(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -274,7 +275,7 @@ class CrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
|
|
@ -12,11 +12,12 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for exponential distribution"""
|
||||
"""test cases for Exponential distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
@ -29,7 +30,7 @@ class Prob(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -53,7 +54,7 @@ class LogProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -77,7 +78,7 @@ class KL(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.e = nn.Exponential([1.5], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([1.5], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -101,7 +102,7 @@ class Basics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.e = nn.Exponential([0.5], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([0.5], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -127,7 +128,7 @@ class Sampling(nn.Cell):
|
|||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
|
@ -151,7 +152,7 @@ class CDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -175,7 +176,7 @@ class LogCDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -199,7 +200,7 @@ class SF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -223,7 +224,7 @@ class LogSF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -247,7 +248,7 @@ class EntropyH(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.e = nn.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -270,7 +271,7 @@ class CrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.e = nn.Exponential([1.0], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([1.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
|
|
@ -17,6 +17,7 @@ import numpy as np
|
|||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
@ -29,7 +30,7 @@ class Prob(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -53,7 +54,7 @@ class LogProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -77,7 +78,7 @@ class KL(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -103,7 +104,7 @@ class Basics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.g = nn.Geometric([0.5, 0.5], dtype=dtype.int32)
|
||||
self.g = msd.Geometric([0.5, 0.5], dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -129,7 +130,7 @@ class Sampling(nn.Cell):
|
|||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.g = nn.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32)
|
||||
self.g = msd.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
|
@ -151,7 +152,7 @@ class CDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -175,7 +176,7 @@ class LogCDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -199,7 +200,7 @@ class SF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -223,7 +224,7 @@ class LogSF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -247,7 +248,7 @@ class EntropyH(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -270,7 +271,7 @@ class CrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.g = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
|
|
@ -12,11 +12,12 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for normal distribution"""
|
||||
"""test cases for Normal distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
@ -29,7 +30,7 @@ class Prob(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -52,7 +53,7 @@ class LogProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -76,7 +77,7 @@ class KL(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_, y_):
|
||||
|
@ -110,7 +111,7 @@ class Basics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -135,7 +136,7 @@ class Sampling(nn.Cell):
|
|||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
|
@ -160,7 +161,7 @@ class CDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -184,7 +185,7 @@ class LogCDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -207,7 +208,7 @@ class SF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -230,7 +231,7 @@ class LogSF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -253,7 +254,7 @@ class EntropyH(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -276,7 +277,7 @@ class CrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_, y_):
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
import mindspore.context as context
|
||||
|
@ -30,7 +31,7 @@ class Net(nn.Cell):
|
|||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.normal = nn.Normal(0., 1., dtype=dtype.float32)
|
||||
self.normal = msd.Normal(0., 1., dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
kl = self.normal.kl_loss('kl_loss', 'Normal', x_, y_)
|
||||
|
|
|
@ -12,11 +12,12 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for uniform distribution"""
|
||||
"""test cases for Uniform distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
@ -29,7 +30,7 @@ class Prob(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -53,7 +54,7 @@ class LogProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -77,7 +78,7 @@ class KL(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.5], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_, y_):
|
||||
|
@ -103,7 +104,7 @@ class Basics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [3.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [3.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -127,7 +128,7 @@ class Sampling(nn.Cell):
|
|||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
|
@ -152,7 +153,7 @@ class CDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -176,7 +177,7 @@ class LogCDF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -188,7 +189,7 @@ class SF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -200,7 +201,7 @@ class LogSF(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
|
@ -212,7 +213,7 @@ class EntropyH(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.0, 2.0], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.0, 2.0], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
|
@ -235,7 +236,7 @@ class CrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.u = nn.Uniform([0.0], [1.5], dtype=dtype.float32)
|
||||
self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_, y_):
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.Bernoulli.
|
||||
Test nn.probability.distribution.Bernoulli.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
@ -25,19 +26,19 @@ def test_arguments():
|
|||
"""
|
||||
Args passing during initialization.
|
||||
"""
|
||||
b = nn.Bernoulli()
|
||||
assert isinstance(b, nn.Distribution)
|
||||
b = nn.Bernoulli([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
|
||||
assert isinstance(b, nn.Distribution)
|
||||
b = msd.Bernoulli()
|
||||
assert isinstance(b, msd.Distribution)
|
||||
b = msd.Bernoulli([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
|
||||
assert isinstance(b, msd.Distribution)
|
||||
|
||||
def test_prob():
|
||||
"""
|
||||
Invalid probability.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Bernoulli([-0.1], dtype=dtype.int32)
|
||||
msd.Bernoulli([-0.1], dtype=dtype.int32)
|
||||
with pytest.raises(ValueError):
|
||||
nn.Bernoulli([1.1], dtype=dtype.int32)
|
||||
msd.Bernoulli([1.1], dtype=dtype.int32)
|
||||
|
||||
class BernoulliProb(nn.Cell):
|
||||
"""
|
||||
|
@ -45,7 +46,7 @@ class BernoulliProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliProb, self).__init__()
|
||||
self.b = nn.Bernoulli(0.5, dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(0.5, dtype=dtype.int32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.b('prob', value)
|
||||
|
@ -71,7 +72,7 @@ class BernoulliProb1(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliProb1, self).__init__()
|
||||
self.b = nn.Bernoulli(dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli(dtype=dtype.int32)
|
||||
|
||||
def construct(self, value, probs):
|
||||
prob = self.b('prob', value, probs)
|
||||
|
@ -98,8 +99,8 @@ class BernoulliKl(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliKl, self).__init__()
|
||||
self.b1 = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b2 = nn.Bernoulli(dtype=dtype.int32)
|
||||
self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b2 = msd.Bernoulli(dtype=dtype.int32)
|
||||
|
||||
def construct(self, probs_b, probs_a):
|
||||
kl1 = self.b1('kl_loss', 'Bernoulli', probs_b)
|
||||
|
@ -122,8 +123,8 @@ class BernoulliCrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliCrossEntropy, self).__init__()
|
||||
self.b1 = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b2 = nn.Bernoulli(dtype=dtype.int32)
|
||||
self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
|
||||
self.b2 = msd.Bernoulli(dtype=dtype.int32)
|
||||
|
||||
def construct(self, probs_b, probs_a):
|
||||
h1 = self.b1('cross_entropy', 'Bernoulli', probs_b)
|
||||
|
@ -146,7 +147,7 @@ class BernoulliBasics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliBasics, self).__init__()
|
||||
self.b = nn.Bernoulli([0.3, 0.5], dtype=dtype.int32)
|
||||
self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.b('mean')
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.Exponential.
|
||||
Test nn.probability.distribution.Exponential.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
@ -26,19 +27,19 @@ def test_arguments():
|
|||
"""
|
||||
Args passing during initialization.
|
||||
"""
|
||||
e = nn.Exponential()
|
||||
assert isinstance(e, nn.Distribution)
|
||||
e = nn.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
|
||||
assert isinstance(e, nn.Distribution)
|
||||
e = msd.Exponential()
|
||||
assert isinstance(e, msd.Distribution)
|
||||
e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
|
||||
assert isinstance(e, msd.Distribution)
|
||||
|
||||
def test_rate():
|
||||
"""
|
||||
Invalid rate.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Exponential([-0.1], dtype=dtype.float32)
|
||||
msd.Exponential([-0.1], dtype=dtype.float32)
|
||||
with pytest.raises(ValueError):
|
||||
nn.Exponential([0.0], dtype=dtype.float32)
|
||||
msd.Exponential([0.0], dtype=dtype.float32)
|
||||
|
||||
class ExponentialProb(nn.Cell):
|
||||
"""
|
||||
|
@ -46,7 +47,7 @@ class ExponentialProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(ExponentialProb, self).__init__()
|
||||
self.e = nn.Exponential(0.5, dtype=dtype.float32)
|
||||
self.e = msd.Exponential(0.5, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.e('prob', value)
|
||||
|
@ -72,7 +73,7 @@ class ExponentialProb1(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(ExponentialProb1, self).__init__()
|
||||
self.e = nn.Exponential(dtype=dtype.float32)
|
||||
self.e = msd.Exponential(dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, rate):
|
||||
prob = self.e('prob', value, rate)
|
||||
|
@ -99,8 +100,8 @@ class ExponentialKl(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(ExponentialKl, self).__init__()
|
||||
self.e1 = nn.Exponential(0.7, dtype=dtype.float32)
|
||||
self.e2 = nn.Exponential(dtype=dtype.float32)
|
||||
self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
|
||||
self.e2 = msd.Exponential(dtype=dtype.float32)
|
||||
|
||||
def construct(self, rate_b, rate_a):
|
||||
kl1 = self.e1('kl_loss', 'Exponential', rate_b)
|
||||
|
@ -123,8 +124,8 @@ class ExponentialCrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(ExponentialCrossEntropy, self).__init__()
|
||||
self.e1 = nn.Exponential(0.3, dtype=dtype.float32)
|
||||
self.e2 = nn.Exponential(dtype=dtype.float32)
|
||||
self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
|
||||
self.e2 = msd.Exponential(dtype=dtype.float32)
|
||||
|
||||
def construct(self, rate_b, rate_a):
|
||||
h1 = self.e1('cross_entropy', 'Exponential', rate_b)
|
||||
|
@ -147,7 +148,7 @@ class ExponentialBasics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(ExponentialBasics, self).__init__()
|
||||
self.e = nn.Exponential([0.3, 0.5], dtype=dtype.float32)
|
||||
self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.e('mean')
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.Geometric.
|
||||
Test nn.probability.distribution.Geometric.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
@ -26,19 +27,19 @@ def test_arguments():
|
|||
"""
|
||||
Args passing during initialization.
|
||||
"""
|
||||
g = nn.Geometric()
|
||||
assert isinstance(g, nn.Distribution)
|
||||
g = nn.Geometric([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
|
||||
assert isinstance(g, nn.Distribution)
|
||||
g = msd.Geometric()
|
||||
assert isinstance(g, msd.Distribution)
|
||||
g = msd.Geometric([0.0, 0.3, 0.5, 1.0], dtype=dtype.int32)
|
||||
assert isinstance(g, msd.Distribution)
|
||||
|
||||
def test_prob():
|
||||
"""
|
||||
Invalid probability.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Geometric([-0.1], dtype=dtype.int32)
|
||||
msd.Geometric([-0.1], dtype=dtype.int32)
|
||||
with pytest.raises(ValueError):
|
||||
nn.Geometric([1.1], dtype=dtype.int32)
|
||||
msd.Geometric([1.1], dtype=dtype.int32)
|
||||
|
||||
class GeometricProb(nn.Cell):
|
||||
"""
|
||||
|
@ -46,7 +47,7 @@ class GeometricProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(GeometricProb, self).__init__()
|
||||
self.g = nn.Geometric(0.5, dtype=dtype.int32)
|
||||
self.g = msd.Geometric(0.5, dtype=dtype.int32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.g('prob', value)
|
||||
|
@ -72,7 +73,7 @@ class GeometricProb1(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(GeometricProb1, self).__init__()
|
||||
self.g = nn.Geometric(dtype=dtype.int32)
|
||||
self.g = msd.Geometric(dtype=dtype.int32)
|
||||
|
||||
def construct(self, value, probs):
|
||||
prob = self.g('prob', value, probs)
|
||||
|
@ -100,8 +101,8 @@ class GeometricKl(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(GeometricKl, self).__init__()
|
||||
self.g1 = nn.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g2 = nn.Geometric(dtype=dtype.int32)
|
||||
self.g1 = msd.Geometric(0.7, dtype=dtype.int32)
|
||||
self.g2 = msd.Geometric(dtype=dtype.int32)
|
||||
|
||||
def construct(self, probs_b, probs_a):
|
||||
kl1 = self.g1('kl_loss', 'Geometric', probs_b)
|
||||
|
@ -124,8 +125,8 @@ class GeometricCrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(GeometricCrossEntropy, self).__init__()
|
||||
self.g1 = nn.Geometric(0.3, dtype=dtype.int32)
|
||||
self.g2 = nn.Geometric(dtype=dtype.int32)
|
||||
self.g1 = msd.Geometric(0.3, dtype=dtype.int32)
|
||||
self.g2 = msd.Geometric(dtype=dtype.int32)
|
||||
|
||||
def construct(self, probs_b, probs_a):
|
||||
h1 = self.g1('cross_entropy', 'Geometric', probs_b)
|
||||
|
@ -148,7 +149,7 @@ class GeometricBasics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(GeometricBasics, self).__init__()
|
||||
self.g = nn.Geometric([0.3, 0.5], dtype=dtype.int32)
|
||||
self.g = msd.Geometric([0.3, 0.5], dtype=dtype.int32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.g('mean')
|
||||
|
|
|
@ -13,12 +13,13 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.Normal.
|
||||
Test nn.probability.distribution.Normal.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
@ -27,17 +28,17 @@ def test_normal_shape_errpr():
|
|||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
msd.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
args passing during initialization.
|
||||
"""
|
||||
n = nn.Normal()
|
||||
assert isinstance(n, nn.Distribution)
|
||||
n = nn.Normal([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(n, nn.Distribution)
|
||||
n = msd.Normal()
|
||||
assert isinstance(n, msd.Distribution)
|
||||
n = msd.Normal([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(n, msd.Distribution)
|
||||
|
||||
|
||||
class NormalProb(nn.Cell):
|
||||
|
@ -46,7 +47,7 @@ class NormalProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(NormalProb, self).__init__()
|
||||
self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
self.normal = msd.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.normal('prob', value)
|
||||
|
@ -73,7 +74,7 @@ class NormalProb1(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(NormalProb1, self).__init__()
|
||||
self.normal = nn.Normal()
|
||||
self.normal = msd.Normal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
prob = self.normal('prob', value, mean, sd)
|
||||
|
@ -101,8 +102,8 @@ class NormalKl(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(NormalKl, self).__init__()
|
||||
self.n1 = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = nn.Normal(dtype=dtype.float32)
|
||||
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.Normal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
kl1 = self.n1('kl_loss', 'Normal', mean_b, sd_b)
|
||||
|
@ -127,8 +128,8 @@ class NormalCrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(NormalCrossEntropy, self).__init__()
|
||||
self.n1 = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = nn.Normal(dtype=dtype.float32)
|
||||
self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.n2 = msd.Normal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, mean_b, sd_b, mean_a, sd_a):
|
||||
h1 = self.n1('cross_entropy', 'Normal', mean_b, sd_b)
|
||||
|
@ -153,7 +154,7 @@ class NormalBasics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(NormalBasics, self).__init__()
|
||||
self.n = nn.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
self.n = msd.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.n('mean')
|
||||
|
|
|
@ -13,12 +13,13 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.Uniform.
|
||||
Test nn.probability.distribution.Uniform.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
|
@ -27,17 +28,17 @@ def test_uniform_shape_errpr():
|
|||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
Args passing during initialization.
|
||||
"""
|
||||
u = nn.Uniform()
|
||||
assert isinstance(u, nn.Distribution)
|
||||
u = nn.Uniform([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(u, nn.Distribution)
|
||||
u = msd.Uniform()
|
||||
assert isinstance(u, msd.Distribution)
|
||||
u = msd.Uniform([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(u, msd.Distribution)
|
||||
|
||||
|
||||
def test_invalid_range():
|
||||
|
@ -45,9 +46,9 @@ def test_invalid_range():
|
|||
Test range of uniform distribution.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Uniform(0.0, 0.0, dtype=dtype.float32)
|
||||
msd.Uniform(0.0, 0.0, dtype=dtype.float32)
|
||||
with pytest.raises(ValueError):
|
||||
nn.Uniform(1.0, 0.0, dtype=dtype.float32)
|
||||
msd.Uniform(1.0, 0.0, dtype=dtype.float32)
|
||||
|
||||
|
||||
class UniformProb(nn.Cell):
|
||||
|
@ -56,7 +57,7 @@ class UniformProb(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(UniformProb, self).__init__()
|
||||
self.u = nn.Uniform(3.0, 4.0, dtype=dtype.float32)
|
||||
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.u('prob', value)
|
||||
|
@ -82,7 +83,7 @@ class UniformProb1(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(UniformProb1, self).__init__()
|
||||
self.u = nn.Uniform(dtype=dtype.float32)
|
||||
self.u = msd.Uniform(dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, low, high):
|
||||
prob = self.u('prob', value, low, high)
|
||||
|
@ -110,8 +111,8 @@ class UniformKl(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(UniformKl, self).__init__()
|
||||
self.u1 = nn.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.u2 = nn.Uniform(dtype=dtype.float32)
|
||||
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.u2 = msd.Uniform(dtype=dtype.float32)
|
||||
|
||||
def construct(self, low_b, high_b, low_a, high_a):
|
||||
kl1 = self.u1('kl_loss', 'Uniform', low_b, high_b)
|
||||
|
@ -136,8 +137,8 @@ class UniformCrossEntropy(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(UniformCrossEntropy, self).__init__()
|
||||
self.u1 = nn.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.u2 = nn.Uniform(dtype=dtype.float32)
|
||||
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.u2 = msd.Uniform(dtype=dtype.float32)
|
||||
|
||||
def construct(self, low_b, high_b, low_a, high_a):
|
||||
h1 = self.u1('cross_entropy', 'Uniform', low_b, high_b)
|
||||
|
@ -162,7 +163,7 @@ class UniformBasics(nn.Cell):
|
|||
"""
|
||||
def __init__(self):
|
||||
super(UniformBasics, self).__init__()
|
||||
self.u = nn.Uniform(3.0, 4.0, dtype=dtype.float32)
|
||||
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.u('mean')
|
||||
|
|
Loading…
Reference in New Issue