forked from mindspore-Ecosystem/mindspore
!674 [pylint] clean pylint warning
Merge pull request !674 from jinyaohui/clean_pylint_0425
This commit is contained in:
commit
e40dc39a14
|
@ -18,8 +18,8 @@ from __future__ import division
|
|||
|
||||
import os
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
|
||||
from PIL import Image
|
||||
import mindspore.dataset as de
|
||||
from mindspore.mindrecord import FileWriter
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
|
|
|
@ -16,6 +16,9 @@
|
|||
from __future__ import absolute_import as _abs
|
||||
import sys
|
||||
import os
|
||||
from .op_build import op_build
|
||||
from .message import compilewithjson
|
||||
|
||||
|
||||
def AKGAddPath():
|
||||
"""_akg add path."""
|
||||
|
@ -58,6 +61,3 @@ class AKGMetaPathLoader:
|
|||
|
||||
|
||||
sys.meta_path.insert(0, AKGMetaPathFinder())
|
||||
|
||||
from .op_build import op_build
|
||||
from .message import compilewithjson
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""FTRL"""
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -23,6 +22,8 @@ from mindspore._checkparam import Rel
|
|||
from .optimizer import Optimizer, apply_decay, grad_scale
|
||||
|
||||
ftrl_opt = C.MultitypeFuncGraph("ftrl_opt")
|
||||
|
||||
|
||||
@ftrl_opt.register("Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||
def _tensor_run_opt(opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment):
|
||||
"""Apply ftrl optimizer to the weight parameter."""
|
||||
|
@ -30,8 +31,10 @@ def _tensor_run_opt(opt, learning_rate, l1, l2, lr_power, linear, gradient, weig
|
|||
success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power))
|
||||
return success
|
||||
|
||||
|
||||
def _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale=1.0, weight_decay=0.0,
|
||||
prim_name=None):
|
||||
"""Check param."""
|
||||
validator.check_value_type("initial_accum", initial_accum, [float], prim_name)
|
||||
validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name)
|
||||
|
||||
|
@ -104,7 +107,7 @@ class FTRL(Optimizer):
|
|||
self.lr_power = lr_power
|
||||
self.reciprocal_scale = 1.0 / loss_scale
|
||||
self.weight_decay = weight_decay
|
||||
self.decay_tf = tuple((lambda:True)() for x in self.parameters)
|
||||
self.decay_tf = tuple((lambda: True)() for x in self.parameters)
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.opt = P.ApplyFtrl(use_locking=use_locking)
|
||||
self.one = Tensor(1, mstype.int32)
|
||||
|
@ -118,5 +121,6 @@ class FTRL(Optimizer):
|
|||
if self.reciprocal_scale != 1.0:
|
||||
grads = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), grads)
|
||||
lr = self.learning_rate
|
||||
success = self.hyper_map(F.partial(ftrl_opt, self.opt, lr, self.l1, self.l2, self.lr_power), linear, grads, params, moments)
|
||||
success = self.hyper_map(F.partial(ftrl_opt, self.opt, lr, self.l1, self.l2, self.lr_power),
|
||||
linear, grads, params, moments)
|
||||
return success
|
||||
|
|
|
@ -2063,7 +2063,7 @@ class LSTM(PrimitiveWithInfer):
|
|||
return (y_shape, h_shape, c_shape, reserved_shape, state_shape)
|
||||
|
||||
def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype):
|
||||
args = {'x': x_dtype, 'h': h_dtype, 'c': c_dtype, 'w': w_dtype}
|
||||
args = {'x': x_dtype, 'h': h_dtype, 'c': c_dtype, 'w': w_dtype}
|
||||
validator.check_tensor_type_same(args, (mstype.float32, mstype.float16), self.name)
|
||||
return (x_dtype, x_dtype, x_dtype, x_dtype, x_dtype)
|
||||
|
||||
|
@ -2691,8 +2691,8 @@ class ConfusionMulGrad(PrimitiveWithInfer):
|
|||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, axis = (), keep_dims = False):
|
||||
self.init_prim_io_names(inputs = ["input0", "input1", "input2"], outputs = ["output0", "output1"])
|
||||
def __init__(self, axis=(), keep_dims=False):
|
||||
self.init_prim_io_names(inputs=["input0", "input1", "input2"], outputs=["output0", "output1"])
|
||||
self.axis_ = validator.check_value_type("axis", axis, [int, tuple, list], self.name)
|
||||
self.keep_dims_ = validator.check_value_type("keep_dims", keep_dims, [bool], self.name)
|
||||
|
||||
|
|
|
@ -41,6 +41,7 @@ class OutputTo16(nn.Cell):
|
|||
|
||||
|
||||
def _do_keep_batchnorm_fp32(network):
|
||||
"""Do keep batchnorm fp32."""
|
||||
cells = network.name_cells()
|
||||
change = False
|
||||
for name in cells:
|
||||
|
@ -68,6 +69,7 @@ _config_level = {
|
|||
|
||||
|
||||
def _check_kwargs(key_words):
|
||||
"""Check kwargs."""
|
||||
for arg in key_words:
|
||||
if arg not in ['cast_model_type', 'keep_batchnorm_fp32', 'loss_scale_manager']:
|
||||
raise ValueError(f"Unsupported arg '{arg}'")
|
||||
|
@ -84,6 +86,7 @@ def _check_kwargs(key_words):
|
|||
|
||||
|
||||
def _add_loss_network(network, loss_fn, cast_model_type):
|
||||
"""Add loss network."""
|
||||
class WithLossCell(nn.Cell):
|
||||
"Wrap loss for amp. Cast network output back to float32"
|
||||
|
||||
|
|
|
@ -683,13 +683,14 @@ class LossMonitor(Callback):
|
|||
|
||||
|
||||
class TimeMonitor(Callback):
|
||||
"""Time Monitor."""
|
||||
def __init__(self, data_size):
|
||||
super(TimeMonitor, self).__init__()
|
||||
self.data_size = data_size
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.epoch_time = time.time()
|
||||
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / self.data_size
|
||||
|
@ -701,4 +702,3 @@ class TimeMonitor(Callback):
|
|||
def step_end(self, run_context):
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
print('step time', step_mseconds, flush=True)
|
||||
|
||||
|
|
|
@ -122,7 +122,7 @@ class Model:
|
|||
def _check_kwargs(self, kwargs):
|
||||
for arg in kwargs:
|
||||
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
|
||||
raise ValueError(f"Unsupport arg '{arg}'")
|
||||
raise ValueError(f"Unsupport arg '{arg}'")
|
||||
|
||||
def _build_train_network(self):
|
||||
"""Build train network"""
|
||||
|
@ -130,17 +130,17 @@ class Model:
|
|||
if self._optimizer:
|
||||
if self._loss_scale_manager_set:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
loss_scale_manager=self._loss_scale_manager,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
loss_scale_manager=self._loss_scale_manager,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
else:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
elif self._loss_fn:
|
||||
network = nn.WithLossCell(network, self._loss_fn)
|
||||
# If need to check if loss_fn is not None, but optimizer is None
|
||||
|
@ -273,14 +273,14 @@ class Model:
|
|||
# remove later to deal with loop sink
|
||||
need_wrap = False
|
||||
if not hasattr(train_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
dataset_helper = DatasetHelper(train_dataset)
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
self._train_network = nn.DataWrapper(self._train_network, *(dataset_helper.types_shapes()),
|
||||
train_dataset.__ME_INITED__)
|
||||
train_dataset.__ME_INITED__)
|
||||
cb_params.train_network = self._train_network
|
||||
self._train_network.set_train()
|
||||
|
||||
|
@ -440,7 +440,7 @@ class Model:
|
|||
# remove later to deal with loop sink
|
||||
need_wrap = False
|
||||
if not hasattr(valid_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
valid_dataset.__loop_size__ = 1
|
||||
|
@ -449,7 +449,7 @@ class Model:
|
|||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
self._eval_network = nn.DataWrapper(self._eval_network, *(dataset_helper.types_shapes()),
|
||||
valid_dataset.__ME_INITED__)
|
||||
valid_dataset.__ME_INITED__)
|
||||
self._eval_network.set_train(mode=False)
|
||||
self._eval_network.phase = 'eval'
|
||||
|
||||
|
|
|
@ -174,8 +174,7 @@ test_sets = [
|
|||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=True,
|
||||
initializer_range=0.02), 1, 1), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)
|
||||
}),
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids],
|
||||
'desc_bprop': [[128]]}),
|
||||
('EmbeddingLookup_multi_outputs_init_param', {
|
||||
|
@ -184,8 +183,7 @@ test_sets = [
|
|||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=False,
|
||||
initializer_range=0.02), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)
|
||||
}),
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids],
|
||||
'desc_bprop': [[1, 128, 768], [128]]}),
|
||||
('EmbeddingLookup_multi_outputs_grad_with_no_sens', {
|
||||
|
@ -194,8 +192,7 @@ test_sets = [
|
|||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=False,
|
||||
initializer_range=0.02), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)
|
||||
}),
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids]}),
|
||||
('GetMaskedLMOutput_grad_with_no_sens', {
|
||||
'block': GetMaskedLMOutput(BertConfig(batch_size=1)),
|
||||
|
|
|
@ -44,4 +44,4 @@ class CheckExceptionsEC(IExectorComponent):
|
|||
raise Exception(f"Expect {e}, but got {sys.exc_info()[0]}")
|
||||
if error_kws and any(keyword not in str(exec_info.value) for keyword in error_kws):
|
||||
raise ValueError('Error message `{}` does not contain all keywords `{}`'.format(
|
||||
str(exec_info.value), error_kws))
|
||||
str(exec_info.value), error_kws))
|
||||
|
|
Loading…
Reference in New Issue