forked from mindspore-Ecosystem/mindspore
!1175 LayerNormGrad fix & codex
Merge pull request !1175 from chenweifeng/layernorm
This commit is contained in:
commit
dbac31e787
|
@ -37,6 +37,5 @@ MS_REG_GPU_KERNEL_TWO(
|
|||
UnsortedSegmentSum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
UnsortedSegmentSumGpuKernel, int, int64_t)
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -18,7 +18,6 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
size_t UnitSizeInBytes(const mindspore::TypeId &t) {
|
||||
size_t bytes = 0;
|
||||
switch (t) {
|
||||
|
@ -65,6 +64,5 @@ int ElementNums(const std::vector<int> &shape) {
|
|||
|
||||
return nums;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -21,7 +21,6 @@
|
|||
#include "ir/dtype/type.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
size_t UnitSizeInBytes(const mindspore::TypeId &t);
|
||||
int ElementNums(const std::vector<int> &shape);
|
||||
} // namespace kernel
|
||||
|
|
|
@ -27,7 +27,6 @@
|
|||
#include "kernel/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T, typename S>
|
||||
class BroadcastOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
|
@ -70,14 +69,14 @@ class BroadcastOpGpuKernel : public GpuKernel {
|
|||
output_num_ *= shape3[i];
|
||||
}
|
||||
int offset = shape3.size() - shape1.size();
|
||||
for (size_t i = 0; i < shape1.size(); i++) {
|
||||
lhs_shape_[i + offset] = shape1[i];
|
||||
input1_num_ *= shape1[i];
|
||||
for (size_t j = 0; j < shape1.size(); j++) {
|
||||
lhs_shape_[j + offset] = shape1[j];
|
||||
input1_num_ *= shape1[j];
|
||||
}
|
||||
offset = shape3.size() - shape2.size();
|
||||
for (size_t i = 0; i < shape2.size(); i++) {
|
||||
rhs_shape_[i + offset] = shape2[i];
|
||||
input2_num_ *= shape2[i];
|
||||
for (size_t k = 0; k < shape2.size(); k++) {
|
||||
rhs_shape_[k + offset] = shape2[k];
|
||||
input2_num_ *= shape2[k];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
|
@ -28,7 +27,6 @@
|
|||
#include "kernel/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
class BroadcastOpGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
|
|
|
@ -36,8 +36,8 @@ class LayerNormGradGpuKernel : public GpuKernel {
|
|||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
auto dy = GetDeviceAddress<T>(inputs, 0);
|
||||
auto x = GetDeviceAddress<T>(inputs, 1);
|
||||
auto x = GetDeviceAddress<T>(inputs, 0);
|
||||
auto dy = GetDeviceAddress<T>(inputs, 1);
|
||||
auto var = GetDeviceAddress<T>(inputs, 2);
|
||||
auto mean = GetDeviceAddress<T>(inputs, 3);
|
||||
auto gamma = GetDeviceAddress<T>(inputs, 4);
|
||||
|
|
|
@ -44,6 +44,5 @@ MS_REG_GPU_KERNEL_ONE(ApplyCenteredRMSProp,
|
|||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
RMSPropGpuKernel, float)
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -80,7 +80,7 @@ def test_layernormgrad0():
|
|||
gamma_ms = Tensor(gamma_np)
|
||||
|
||||
net = LayerNormGradNet(begin_norm_axis, begin_params_axis)
|
||||
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms)
|
||||
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms)
|
||||
|
||||
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6)
|
||||
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3)
|
||||
|
@ -107,7 +107,7 @@ def test_layernormgrad1():
|
|||
gamma_ms = Tensor(gamma_np)
|
||||
|
||||
net = LayerNormGradNet(begin_norm_axis, begin_params_axis)
|
||||
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms)
|
||||
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms)
|
||||
|
||||
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6)
|
||||
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3)
|
||||
|
@ -133,8 +133,8 @@ def test_layernormgrad2():
|
|||
gamma_ms = Tensor(gamma_np)
|
||||
|
||||
net = LayerNormGradNet(begin_norm_axis, begin_params_axis)
|
||||
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms)
|
||||
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms)
|
||||
|
||||
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6)
|
||||
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3)
|
||||
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3)
|
||||
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3)
|
||||
|
|
Loading…
Reference in New Issue