forked from mindspore-Ecosystem/mindspore
switch positon of the codes for second_order
This commit is contained in:
parent
27c13794d2
commit
da62a44d85
|
@ -16,6 +16,7 @@
|
|||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
config = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 32,
|
|
@ -13,24 +13,26 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes -1), mstype.float32)
|
||||
#self.cast = P.Cast()
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
# self.cast = P.Cast()
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
|
||||
def construct(self, logit, label):
|
||||
#one_hot_label = self.onehot(self.cast(label, mstype.int32),
|
||||
# one_hot_label = self.onehot(self.cast(label, mstype.int32),
|
||||
# F.shape(logit)[1], self.on_value, self.off_value)、
|
||||
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, one_hot_label)
|
|
@ -12,10 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusBatchMatMul",
|
||||
"imply_type": "TBE",
|
||||
|
@ -71,11 +70,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def CusBatchMatMul(input_x1, input_x2, output, transpose_a=False, transpose_b=True, kernel_name="batchmatmul"):
|
||||
|
||||
return
|
|
@ -12,9 +12,9 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusCholeskyTrsm",
|
||||
"imply_type": "TBE",
|
||||
|
@ -58,7 +58,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
|
||||
def CusCholeskyTrsm(input_x,output, kernel_name):
|
||||
def CusCholeskyTrsm(input_x, output, kernel_name):
|
||||
return
|
|
@ -12,42 +12,27 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
import mindspore as ms
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
# y = x^2
|
||||
class CusBatchMatMul(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
# self.transpose_a = transpose_a
|
||||
# self.transpose_b = transpose_b
|
||||
from .batch_matmul_impl import CusBatchMatMul
|
||||
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1),C.zeros_like(x2))
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
#shape = [1, data1_shape[1], data2_shape[2], 16, 16]
|
||||
#return shape
|
||||
# if self.transpose_a == True:
|
||||
# k1, m = data1_shape
|
||||
# else:
|
||||
# m, k1 = data1_shape
|
||||
# if self.transpose_b == True:
|
||||
# n, k2 = data2_shape
|
||||
# else:
|
||||
# k2, n = data2_shape
|
||||
# assert k1==k2
|
||||
# shape = [m, n]
|
||||
return data1_shape
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return data1_dtype
|
||||
# return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
||||
return data1_dtype
|
|
@ -12,24 +12,23 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
|
||||
class CusCholeskyTrsm(PrimitiveWithInfer):
|
||||
"""CusCholeskyTrsm definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusCholeskyTrsm"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
from .cholesky_trsm import CusCholeskyTrsm
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
m,n = data1_shape
|
||||
m, n = data1_shape
|
||||
if m >= 128:
|
||||
return [m//128,128,128]
|
||||
return [m // 128, 128, 128]
|
||||
else:
|
||||
return [1,64,64]
|
||||
|
||||
return [1, 64, 64]
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
||||
return data1_dtype
|
|
@ -12,31 +12,30 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
|
||||
class CusFusedAbsMax1(PrimitiveWithInfer):
|
||||
"""CusCholeskyTrsm definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, origin_shape = [-1,-1]):
|
||||
def __init__(self, origin_shape=[-1, -1]):
|
||||
"""init CusCholeskyTrsm"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
from .fused_abs_max1 import CusFusedAbsMax1
|
||||
self.origin_shape = origin_shape
|
||||
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
if len(data1_shape) == 2:
|
||||
return [1,]
|
||||
return [1, ]
|
||||
else:
|
||||
return [32, 64]
|
||||
# return [128,128]
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
|
@ -13,26 +13,26 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
class CusImg2Col(PrimitiveWithInfer):
|
||||
"""CusImg2Col definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, ksizes, strides, dilates = (1, 1, 1, 1), mode="NC1HWC0"):
|
||||
def __init__(self, ksizes, strides, dilates=(1, 1, 1, 1), mode="NC1HWC0"):
|
||||
"""init CusImg2Col"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
self.ksizes = ksizes
|
||||
self.strides = strides
|
||||
self.dilates = dilates
|
||||
self.mode = mode
|
||||
from .img2col_impl import CusImg2Col
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape):
|
|
@ -12,30 +12,31 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
import mindspore as ms
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
# y = x^2
|
||||
class CusMatMulCube(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, transpose_a=False, transpose_b=False):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
self.transpose_a = transpose_a
|
||||
self.transpose_b = transpose_b
|
||||
from .matmul_cube_impl import CusMatMulCube
|
||||
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1),C.zeros_like(x2))
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
#shape = [1, data1_shape[1], data2_shape[2], 16, 16]
|
||||
#return shape
|
||||
# shape = [1, data1_shape[1], data2_shape[2], 16, 16]
|
||||
# return shape
|
||||
if self.transpose_a == True:
|
||||
k1, m = data1_shape
|
||||
else:
|
||||
|
@ -44,9 +45,9 @@ class CusMatMulCube(PrimitiveWithInfer):
|
|||
n, k2 = data2_shape
|
||||
else:
|
||||
k2, n = data2_shape
|
||||
assert k1==k2
|
||||
assert k1 == k2
|
||||
shape = [m, n]
|
||||
return shape
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
|
@ -12,27 +12,28 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
import mindspore as ms
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
# y = x^2
|
||||
class CusMatMulCubeDenseLeft(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
from .matmul_cube_dense_left import CusMatMulCubeDenseLeft
|
||||
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1),C.zeros_like(x2))
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
return data2_shape
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float16"))
|
|
@ -12,27 +12,27 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
import mindspore as ms
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
# y = x^2
|
||||
|
||||
|
||||
class CusMatMulCubeFraczRightMul(PrimitiveWithInfer):
|
||||
"""CusMatMulCubeFraczRightMul definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCubeFraczRightMul"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
|
||||
from .matmul_cube_fracz_right_mul_impl import CusMatMulCubeFraczRightMul
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, x3, out, dout):
|
||||
return (C.zeros_like(x1),C.zeros_like(x2),C.zeros_like(x3))
|
||||
return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape, data3_shape):
|
||||
return data1_shape
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
|
@ -12,29 +12,29 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
import mindspore as ms
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
# y = x^2
|
||||
|
||||
|
||||
class CusMatrixCombine(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
from .matrix_combine_impl import CusMatrixCombine
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data_shape):
|
||||
a, b, c = data_shape
|
||||
shape = [a*b, a*c]
|
||||
|
||||
shape = [a * b, a * c]
|
||||
|
||||
return shape
|
||||
|
||||
|
||||
def infer_dtype(self, data_dtype):
|
||||
return data_dtype
|
|
@ -12,35 +12,33 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
|
||||
class CusTranspose02314(PrimitiveWithInfer):
|
||||
"""CusTranspose02314 definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusTranspose02314"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
from .transpose02314_impl import CusTranspose02314
|
||||
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
assert len(data1_shape) == 4
|
||||
n, c, h, w = data1_shape
|
||||
c0 = 16
|
||||
c1 = c // 16
|
||||
shape = (n * h * w, c1 * c0)
|
||||
# axis_0, axis_1, axis_2, axis_3, axis_4 = data1_shape
|
||||
# shape = (axis_0, axis_2, axis_3, axis_1, axis_4)
|
||||
return shape
|
||||
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusFusedAbsMax1",
|
||||
"imply_type": "TBE",
|
||||
|
@ -64,5 +64,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
def CusFusedAbsMax1(input_x, output, origin_shape = None, kernel_name="fused_abs_max1"):
|
||||
def CusFusedAbsMax1(input_x, output, origin_shape=None, kernel_name="fused_abs_max1"):
|
||||
return
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusImg2ColNC1HWC0",
|
||||
"imply_type": "TBE",
|
||||
|
@ -82,6 +82,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
def CusImg2ColNC1HWC0(input_x, output, ksizes, strides, dilates, padding, kernel_name="img2col"):
|
||||
return
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2019 Huawei Technologies Co., Ltd
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -18,22 +18,15 @@ limitations under the License.
|
|||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
import te.lang.cce
|
||||
import te.platform.cce_params as cce
|
||||
from te.platform.fusion_manager import fusion_manager
|
||||
from te import tvm
|
||||
from topi import generic
|
||||
from topi.cce import util
|
||||
|
||||
from impl.matmul_vector import matmul_vector_cce
|
||||
|
||||
from te import tik
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeDenseLeft",
|
||||
"imply_type": "TBE",
|
||||
|
@ -102,8 +95,7 @@ NoneType = type(None)
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
|
||||
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
return
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2019 Huawei Technologies Co., Ltd
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -18,19 +18,15 @@ limitations under the License.
|
|||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
import te.platform.cce_params as cce
|
||||
from te import tvm
|
||||
from topi.cce import util
|
||||
|
||||
from te import tik
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeFraczLeftCast",
|
||||
"imply_type": "TBE",
|
||||
|
@ -99,7 +95,6 @@ NoneType = type(None)
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCubeFraczLeftCast(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2019 Huawei Technologies Co., Ltd
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -18,21 +18,14 @@ limitations under the License.
|
|||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
import te.lang.cce
|
||||
import te.platform.cce_params as cce
|
||||
from te.platform.fusion_manager import fusion_manager
|
||||
from te import tvm
|
||||
from topi import generic
|
||||
from topi.cce import util
|
||||
from te import tik
|
||||
from impl.matmul_vector import matmul_vector_cce
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeFraczRightMul",
|
||||
"imply_type": "TBE",
|
||||
|
@ -114,8 +107,6 @@ NoneType = type(None)
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
def CusMatMulCubeFraczRightMul(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
|
||||
def CusMatMulCubeFraczRightMul(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
return
|
||||
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2019 Huawei Technologies Co., Ltd
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -18,20 +18,15 @@ limitations under the License.
|
|||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
import te.lang.cce
|
||||
import te.platform.cce_params as cce
|
||||
from te import tvm
|
||||
from topi import generic
|
||||
from topi.cce import util
|
||||
|
||||
from impl.matmul_vector import matmul_vector_cce
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCube",
|
||||
"imply_type": "TBE",
|
||||
|
@ -112,8 +107,7 @@ NoneType = type(None)
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCube(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
|
||||
return
|
||||
return
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatrixCombine",
|
||||
"imply_type": "TBE",
|
||||
|
@ -58,7 +58,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
|
||||
def CusMatrixCombine(input_x, output,kernel_name="matrix_combine"):
|
||||
def CusMatrixCombine(input_x, output, kernel_name="matrix_combine"):
|
||||
return
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from te import tik
|
||||
from topi.cce import util
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusTranspose02314",
|
||||
"imply_type": "TBE",
|
||||
|
@ -58,6 +58,5 @@ from mindspore.ops.op_info_register import op_info_register
|
|||
}
|
||||
]
|
||||
}""")
|
||||
|
||||
def CusTranspose02314(input_x, output, kernel_name="transpose021354"):
|
||||
return
|
|
@ -16,11 +16,12 @@
|
|||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as V_C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from config_imagenet import config
|
||||
import mindspore.dataset.transforms.vision.c_transforms as V_C
|
||||
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||
"""
|
||||
|
@ -41,7 +42,7 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
|||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=False)
|
||||
else:
|
||||
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
|
@ -61,9 +62,9 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
|||
V_C.Normalize(mean=mean, std=std),
|
||||
V_C.HWC2CHW()
|
||||
]
|
||||
#type_cast_op = C2.TypeCast(mstype.float16)
|
||||
# type_cast_op = C2.TypeCast(mstype.float16)
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
|
||||
ds = ds.map(input_columns="image", operations=transform_img, num_parallel_workers=8)
|
||||
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
|
||||
|
|
@ -13,14 +13,17 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
||||
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
|
||||
lr = float(init_lr) + lr_inc * current_step
|
||||
return lr
|
||||
|
||||
|
||||
def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
||||
base_lr = lr
|
||||
warmup_init_lr = 0
|
||||
|
@ -39,6 +42,7 @@ def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, et
|
|||
lr_each_step.append(lr)
|
||||
return np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
|
||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
||||
base_lr = lr
|
||||
warmup_init_lr = 0
|
||||
|
@ -57,6 +61,7 @@ def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_
|
|||
lr_each_step.append(lr)
|
||||
return np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
|
||||
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
|
@ -13,15 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset help for minddata dataset"""
|
||||
from mindspore._checkparam import check_bool
|
||||
from mindspore import context
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _to_tensor, \
|
||||
_construct_tensor_list, _to_full_shapes, _to_full_tensor
|
||||
from mindspore._checkparam import check_bool
|
||||
from mindspore.nn.wrap import GetNextSingleOp
|
||||
from mindspore.parallel._utils import _get_device_num, _get_global_rank, _get_parallel_mode
|
||||
|
||||
|
||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _to_tensor, \
|
||||
_construct_tensor_list, _to_full_shapes, _to_full_tensor
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
|
||||
|
||||
class DatasetHelper:
|
||||
"""
|
||||
Help function to use the Minddata dataset.
|
||||
|
@ -41,9 +41,10 @@ class DatasetHelper:
|
|||
>>> for inputs in dataset_helper:
|
||||
>>> outputs = network(*inputs)
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, first_order_iter=0, dataset_sink_mode=True):
|
||||
check_bool(dataset_sink_mode)
|
||||
|
||||
|
||||
iterclass = _DatasetIterGE
|
||||
if not dataset_sink_mode:
|
||||
iterclass = _DatasetIterFeed
|
||||
|
@ -52,24 +53,25 @@ class DatasetHelper:
|
|||
iterclass = _DatasetIterMSLoopSink
|
||||
else:
|
||||
iterclass = _DatasetIterMS
|
||||
|
||||
|
||||
self.iter = iterclass(dataset, first_order_iter)
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
return self.iter.__iter__()
|
||||
|
||||
|
||||
# A temp solution for loop sink. Delete later
|
||||
def types_shapes(self):
|
||||
"""Get the types and shapes from dataset on current config."""
|
||||
return self.iter.types_shapes()
|
||||
|
||||
|
||||
def loop_size(self):
|
||||
"""Get loop_size for every iteration."""
|
||||
return self.iter.loop_size
|
||||
|
||||
|
||||
|
||||
|
||||
class _DatasetIter:
|
||||
"""Base iter for dataset help"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
self.loop_size = 1
|
||||
if not hasattr(dataset, '__ME_INITED__'):
|
||||
|
@ -78,7 +80,7 @@ class _DatasetIter:
|
|||
else:
|
||||
self.loop_size = dataset.__loop_size__
|
||||
dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name
|
||||
|
||||
|
||||
self.ind = 0
|
||||
self.dataset = dataset
|
||||
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
||||
|
@ -89,53 +91,57 @@ class _DatasetIter:
|
|||
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
device_num = _get_device_num()
|
||||
self.dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
self.ind = 0
|
||||
return self
|
||||
|
||||
|
||||
def __next__(self):
|
||||
if self.ind >= self.loop_count:
|
||||
raise StopIteration()
|
||||
self.ind += 1
|
||||
return self.op()
|
||||
|
||||
|
||||
def types_shapes(self):
|
||||
return self.dataset_types, self.dataset_shapes
|
||||
|
||||
|
||||
def get_loop_count(self, dataset):
|
||||
loop_count = 1
|
||||
if hasattr(dataset, '__loop_size__'):
|
||||
loop_size = dataset.__loop_size__
|
||||
loop_count = int(dataset.get_dataset_size()/loop_size)
|
||||
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||
return loop_count
|
||||
|
||||
|
||||
|
||||
|
||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||
"""Iter for context (enable_loop_sink=True)"""
|
||||
|
||||
def __init__(self, dataset, first_order_iter):
|
||||
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
||||
# self.loop_count = self.get_loop_count(dataset)
|
||||
loop_size = dataset.__loop_size__ + first_order_iter
|
||||
self.loop_count = int(dataset.get_dataset_size()/loop_size) * 2
|
||||
|
||||
self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
|
||||
|
||||
def op():
|
||||
return tuple()
|
||||
|
||||
self.op = op
|
||||
|
||||
|
||||
|
||||
|
||||
class _DatasetIterMS(_DatasetIter):
|
||||
"""Iter for context (enable_loop_sink=False)"""
|
||||
|
||||
def __init__(self, dataset, first_order_order):
|
||||
super(_DatasetIterMS, self).__init__(dataset)
|
||||
self.loop_count = dataset.get_dataset_size()
|
||||
self.loop_size = 1
|
||||
queue_name = dataset.__ME_INITED__
|
||||
self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
|
||||
|
||||
|
||||
|
||||
class _DatasetIterGE(_DatasetIter):
|
||||
"""Iter for ge"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
super(_DatasetIterGE, self).__init__(dataset)
|
||||
self.loop_count = self.get_loop_count(dataset)
|
||||
|
@ -145,14 +151,16 @@ class _DatasetIterGE(_DatasetIter):
|
|||
if self.need_to_full:
|
||||
batch_expand_num = _get_device_num()
|
||||
tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
|
||||
|
||||
|
||||
def op():
|
||||
return tensor_list_run
|
||||
|
||||
self.op = op
|
||||
|
||||
|
||||
|
||||
|
||||
class _DatasetIterFeed:
|
||||
"""Iter for feed data"""
|
||||
|
||||
def __init__(self, dataset, first_order_order):
|
||||
self.dataset = dataset
|
||||
self.device_num = _get_device_num()
|
||||
|
@ -161,18 +169,18 @@ class _DatasetIterFeed:
|
|||
self.repeat_ind = 0
|
||||
self.loop_count = dataset.get_dataset_size()
|
||||
self.ind = 0
|
||||
|
||||
|
||||
parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||
self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
|
||||
|
||||
def __iter__(self):
|
||||
if self.repeat_ind % self.repeat_count == 0:
|
||||
self.iter = self.dataset.__iter__()
|
||||
|
||||
|
||||
self.repeat_ind += 1
|
||||
self.ind = 0
|
||||
return self
|
||||
|
||||
|
||||
def __next__(self):
|
||||
if self.ind >= self.loop_count:
|
||||
raise StopIteration()
|
|
@ -12,28 +12,30 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.nn.cell import Cell
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.communication.management import GlobalComm, get_group_size
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.ops.operations.comm_ops import AllReduce, ReduceOp
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.communication import create_group
|
||||
|
||||
reduce_opt = C.MultitypeFuncGraph("reduce_opt")
|
||||
|
||||
_all_reduce_A = AllReduce()
|
||||
|
||||
|
||||
def _init_optimizer_allreduce(group):
|
||||
global _all_reduce_A
|
||||
_all_reduce_A = AllReduce(ReduceOp.SUM, GlobalComm.WORLD_COMM_GROUP)
|
||||
_all_reduce_A.add_prim_attr('fusion', group)
|
||||
|
||||
|
||||
@reduce_opt.register("Function", "Number", "Tensor")
|
||||
def _tensors_allreduce_mean(mul, degree, grad):
|
||||
degree = F.scalar_cast(degree, F.dtype(grad))
|
||||
grad = _all_reduce_A(grad)
|
||||
cast_op = P.Cast()
|
||||
return mul(grad, cast_op(F.scalar_to_array(1.0/degree), F.dtype(grad)))
|
||||
return mul(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
|
||||
|
||||
|
||||
@reduce_opt.register("Bool", "Tensor")
|
||||
def _tensors_allreduce(allreduce_filter, grad):
|
||||
|
@ -41,8 +43,10 @@ def _tensors_allreduce(allreduce_filter, grad):
|
|||
return _all_reduce_A(grad)
|
||||
return grad
|
||||
|
||||
|
||||
_get_datatype = C.MultitypeFuncGraph("_get_datatype")
|
||||
|
||||
|
||||
@_get_datatype.register("Tensor")
|
||||
def _tensors_get_datatype(grad):
|
||||
"""
|
|
@ -13,29 +13,26 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Model."""
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.metrics import get_metrics
|
||||
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
||||
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore._c_expression import init_exec_dataset
|
||||
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.dtype import pytype_to_dtype
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.metrics import Loss
|
||||
from mindspore.nn.metrics import get_metrics
|
||||
from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell
|
||||
from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \
|
||||
_get_parameter_broadcast, _device_number_check, _parameter_broadcast_check
|
||||
from mindspore.nn.metrics import Loss
|
||||
from mindspore.nn.wrap import WithLossCell, WithEvalCell, \
|
||||
DataWrapper
|
||||
from mindspore.nn.wrap.cell_wrapper import _VirtualDatasetCell
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
from mindspore.common import dtype as mstype
|
||||
from second_order.dataset_helper import DatasetHelper
|
||||
from mindspore.train import amp
|
||||
|
||||
from mindspore.common.dtype import pytype_to_dtype
|
||||
from mindspore._c_expression import init_exec_dataset
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
from second_order.dataset_helper import DatasetHelper
|
||||
|
||||
|
||||
def _convert_type(types):
|
||||
"""
|
||||
Convert from numpy type to tensor type.
|
||||
|
@ -51,18 +48,20 @@ def _convert_type(types):
|
|||
ms_type = pytype_to_dtype(np_type)
|
||||
ms_types.append(ms_type)
|
||||
return ms_types
|
||||
|
||||
|
||||
|
||||
def _get_types_and_shapes(dataset):
|
||||
"""Get dataset types and shapes."""
|
||||
dataset_types = _convert_type(dataset.output_types())
|
||||
dataset_shapes = dataset.output_shapes()
|
||||
return dataset_types, dataset_shapes
|
||||
|
||||
|
||||
|
||||
def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'):
|
||||
"""Initialize and execute the dataset graph."""
|
||||
batch_size = exec_dataset.get_batch_size()
|
||||
input_indexs = exec_dataset.input_indexs
|
||||
|
||||
|
||||
# transform data format
|
||||
dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset)
|
||||
init_exec_dataset(exec_dataset.__ME_INITED__,
|
||||
|
@ -72,8 +71,8 @@ def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'):
|
|||
dataset_shapes,
|
||||
input_indexs,
|
||||
phase=phase)
|
||||
|
||||
|
||||
|
||||
|
||||
class Model:
|
||||
"""
|
||||
High-Level API for Training or Testing.
|
||||
|
@ -131,7 +130,7 @@ class Model:
|
|||
>>> dataset = get_dataset()
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
|
||||
eval_indexes=None, amp_level="O0", frequency=278, **kwargs):
|
||||
self._network = network
|
||||
|
@ -152,49 +151,49 @@ class Model:
|
|||
self._device_number = _get_device_num()
|
||||
self._global_rank = _get_global_rank()
|
||||
self._parameter_broadcast = _get_parameter_broadcast()
|
||||
|
||||
|
||||
self._train_network = self._build_train_network()
|
||||
self._build_eval_network(metrics, eval_network, eval_indexes)
|
||||
self._build_predict_network()
|
||||
|
||||
|
||||
def _check_kwargs(self, kwargs):
|
||||
for arg in kwargs:
|
||||
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
|
||||
raise ValueError(f"Unsupport arg '{arg}'")
|
||||
|
||||
raise ValueError(f"Unsupport arg '{arg}'")
|
||||
|
||||
def _build_train_network(self):
|
||||
"""Build train network"""
|
||||
network = self._network
|
||||
if self._optimizer:
|
||||
if self._loss_scale_manager_set:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
loss_scale_manager=self._loss_scale_manager,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
loss_scale_manager=self._loss_scale_manager,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
else:
|
||||
network = amp.build_train_network(network,
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
self._optimizer,
|
||||
self._loss_fn,
|
||||
level=self._amp_level,
|
||||
keep_batchnorm_fp32=self._keep_bn_fp32)
|
||||
elif self._loss_fn:
|
||||
network = nn.WithLossCell(network, self._loss_fn)
|
||||
# If need to check if loss_fn is not None, but optimizer is None
|
||||
return network
|
||||
|
||||
|
||||
def _build_eval_network(self, metrics, eval_network, eval_indexes):
|
||||
"""Build the network for evaluation."""
|
||||
self._metric_fns = get_metrics(metrics)
|
||||
if not self._metric_fns:
|
||||
return
|
||||
|
||||
|
||||
if eval_network is not None:
|
||||
if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3):
|
||||
raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \
|
||||
must be three. But got {}".format(eval_indexes))
|
||||
|
||||
|
||||
self._eval_network = eval_network
|
||||
self._eval_indexes = eval_indexes
|
||||
else:
|
||||
|
@ -202,27 +201,27 @@ class Model:
|
|||
raise ValueError("loss_fn can not be None.")
|
||||
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn)
|
||||
self._eval_indexes = [0, 1, 2]
|
||||
|
||||
|
||||
def _build_predict_network(self):
|
||||
"""Build the network for prediction."""
|
||||
self._predict_network = self._network
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
self._predict_network = _VirtualDatasetCell(self._network)
|
||||
|
||||
|
||||
def _clear_metrics(self):
|
||||
"""Clear metrics local values."""
|
||||
for metric in self._metric_fns.values():
|
||||
metric.clear()
|
||||
|
||||
|
||||
def _update_metrics(self, outputs):
|
||||
"""Update metrics local values."""
|
||||
if not isinstance(outputs, tuple):
|
||||
raise ValueError("The `outputs` is not tuple.")
|
||||
|
||||
|
||||
if self._eval_indexes is not None and len(outputs) < 3:
|
||||
raise ValueError("The length of `outputs` must be greater than or equal to 3, \
|
||||
but got {}".format(len(outputs)))
|
||||
|
||||
|
||||
for metric in self._metric_fns.values():
|
||||
if self._eval_indexes is None:
|
||||
metric.update(*outputs)
|
||||
|
@ -231,14 +230,14 @@ class Model:
|
|||
metric.update(outputs[self._eval_indexes[0]])
|
||||
else:
|
||||
metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]])
|
||||
|
||||
|
||||
def _get_metrics(self):
|
||||
"""Get metrics local values."""
|
||||
metrics = dict()
|
||||
for key, value in self._metric_fns.items():
|
||||
metrics[key] = value.eval()
|
||||
return metrics
|
||||
|
||||
|
||||
def _get_scaling_sens(self):
|
||||
"""get the scaling sens"""
|
||||
scaling_sens = 1
|
||||
|
@ -247,7 +246,7 @@ class Model:
|
|||
if self._parallel_mode == ParallelMode.DATA_PARALLEL:
|
||||
scaling_sens /= self._device_number
|
||||
return scaling_sens
|
||||
|
||||
|
||||
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Training.
|
||||
|
@ -266,10 +265,10 @@ class Model:
|
|||
"""
|
||||
epoch = check_int_positive(epoch)
|
||||
self._train_network.set_train()
|
||||
|
||||
|
||||
if self._parameter_broadcast:
|
||||
self._train_network.set_broadcast_flag()
|
||||
|
||||
|
||||
# build callback list
|
||||
list_callback = _build_callbacks(callbacks)
|
||||
cb_params = _InternalCallbackParam()
|
||||
|
@ -283,7 +282,7 @@ class Model:
|
|||
cb_params.device_number = self._device_number
|
||||
cb_params.train_dataset = train_dataset
|
||||
cb_params.list_callback = list_callback
|
||||
|
||||
|
||||
if dataset_sink_mode:
|
||||
if context.get_context("mode") == context.PYNATIVE_MODE:
|
||||
logger.warning("The pynative mode cannot support dataset sink mode currently."
|
||||
|
@ -293,7 +292,6 @@ class Model:
|
|||
self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params)
|
||||
else:
|
||||
self._train_process(epoch, train_dataset, list_callback, cb_params)
|
||||
|
||||
|
||||
def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
|
@ -317,7 +315,7 @@ class Model:
|
|||
if not hasattr(train_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
|
||||
dataset_helper = DatasetHelper(train_dataset, iter_first_order)
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
|
@ -330,7 +328,7 @@ class Model:
|
|||
loop_size = dataset_helper.loop_size()
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
has_do_train1_dataset = False
|
||||
|
@ -338,7 +336,7 @@ class Model:
|
|||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
list_callback.epoch_begin(run_context)
|
||||
|
||||
|
||||
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
|
||||
for inputs in dataset_helper:
|
||||
list_callback.step_begin(run_context)
|
||||
|
@ -357,14 +355,14 @@ class Model:
|
|||
outputs = self._train_network(*inputs)
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
|
||||
|
||||
list_callback.epoch_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
|
||||
list_callback.end(run_context)
|
||||
|
||||
|
||||
def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Training process. The data would be passed to network directly.
|
||||
|
@ -385,12 +383,12 @@ class Model:
|
|||
_callback_wrapper(list_callback, run_context, "begin")
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
|
||||
|
||||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "epoch_begin")
|
||||
|
||||
|
||||
for next_element in dataset_helper:
|
||||
len_element = len(next_element)
|
||||
if self._loss_fn and len_element != 2:
|
||||
|
@ -398,33 +396,33 @@ class Model:
|
|||
"return two elements, but got {}".format(len_element))
|
||||
cb_params.cur_step_num += 1
|
||||
_callback_wrapper(list_callback, run_context, "step_begin")
|
||||
|
||||
|
||||
overflow = False
|
||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||
scaling_sens = self._get_scaling_sens()
|
||||
next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),)
|
||||
|
||||
|
||||
outputs = self._train_network(*next_element)
|
||||
cb_params.net_outputs = outputs
|
||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||
_, overflow, _ = outputs
|
||||
overflow = np.all(overflow.asnumpy())
|
||||
self._loss_scale_manager.update_loss_scale(overflow)
|
||||
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "step_end")
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
|
||||
train_dataset.reset()
|
||||
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "epoch_end")
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "end")
|
||||
|
||||
|
||||
def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Training API where the iteration is controlled by python front-end.
|
||||
|
@ -470,12 +468,12 @@ class Model:
|
|||
|
||||
if context.get_context("device_target") in ["CPU", "GPU"] and context.get_context("enable_loop_sink"):
|
||||
raise ValueError("CPU and GPU can't support loop sink, please set enable_loop_sink=False.")
|
||||
|
||||
|
||||
self._train(epoch,
|
||||
train_dataset,
|
||||
callbacks=callbacks,
|
||||
dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
|
||||
def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Evaluation. The data would be passed to network through dataset channel.
|
||||
|
@ -489,42 +487,42 @@ class Model:
|
|||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
"""
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
|
||||
|
||||
run_context = RunContext(cb_params)
|
||||
|
||||
|
||||
# remove later to deal with loop sink
|
||||
need_wrap = False
|
||||
if not hasattr(valid_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
|
||||
valid_dataset.__loop_size__ = 1
|
||||
dataset_helper = DatasetHelper(valid_dataset)
|
||||
|
||||
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
self._eval_network = nn.DataWrapper(self._eval_network, *(dataset_helper.types_shapes()),
|
||||
valid_dataset.__ME_INITED__)
|
||||
valid_dataset.__ME_INITED__)
|
||||
self._eval_network.set_train(mode=False)
|
||||
self._eval_network.phase = 'eval'
|
||||
list_callback.begin(run_context)
|
||||
|
||||
|
||||
for inputs in dataset_helper:
|
||||
cb_params.cur_step_num += 1
|
||||
list_callback.step_begin(run_context)
|
||||
|
||||
|
||||
outputs = self._eval_network(*inputs)
|
||||
|
||||
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
self._update_metrics(outputs)
|
||||
|
||||
|
||||
metrics = self._get_metrics()
|
||||
cb_params.metrics = metrics
|
||||
list_callback.end(run_context)
|
||||
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
def _eval_process(self, valid_dataset, list_callback=None, cb_params=None):
|
||||
"""
|
||||
Evaluation. The data would be passed to network directly.
|
||||
|
@ -539,7 +537,7 @@ class Model:
|
|||
"""
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
|
||||
dataset_helper = DatasetHelper(valid_dataset, dataset_sink_mode=False)
|
||||
for next_element in dataset_helper:
|
||||
cb_params.cur_step_num += 1
|
||||
|
@ -548,12 +546,12 @@ class Model:
|
|||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
self._update_metrics(outputs)
|
||||
|
||||
|
||||
metrics = self._get_metrics()
|
||||
cb_params.metrics = metrics
|
||||
list_callback.end(run_context)
|
||||
return metrics
|
||||
|
||||
|
||||
def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Evaluation API where the iteration is controlled by python front-end.
|
||||
|
@ -584,7 +582,7 @@ class Model:
|
|||
check_bool(dataset_sink_mode)
|
||||
if not self._metric_fns:
|
||||
raise ValueError("metric fn can not be None or empty.")
|
||||
|
||||
|
||||
list_callback = _build_callbacks(callbacks)
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.eval_network = self._eval_network
|
||||
|
@ -592,16 +590,16 @@ class Model:
|
|||
cb_params.batch_num = valid_dataset.get_dataset_size()
|
||||
cb_params.mode = "eval"
|
||||
cb_params.cur_step_num = 0
|
||||
|
||||
|
||||
self._eval_network.set_train(mode=False)
|
||||
self._eval_network.phase = 'eval'
|
||||
|
||||
|
||||
self._clear_metrics()
|
||||
|
||||
|
||||
if dataset_sink_mode:
|
||||
return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params)
|
||||
return self._eval_process(valid_dataset, list_callback, cb_params)
|
||||
|
||||
|
||||
def predict(self, *predict_data):
|
||||
"""
|
||||
Generates output predictions for the input samples.
|
||||
|
@ -625,9 +623,9 @@ class Model:
|
|||
self._predict_network.set_train(False)
|
||||
check_input_data(*predict_data, data_class=Tensor)
|
||||
result = self._predict_network(*predict_data)
|
||||
|
||||
|
||||
check_output_data(result)
|
||||
return result
|
||||
|
||||
|
||||
|
||||
|
||||
__all__ = ["Model"]
|
|
@ -13,13 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ResNet."""
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.tensor import Tensor
|
||||
from second_order.thor_layer import Conv2d_Thor, Dense_Thor
|
||||
import math
|
||||
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from second_order.thor_layer import Conv2d_Thor, Dense_Thor
|
||||
|
||||
|
||||
def calculate_gain(nonlinearity, param=None):
|
||||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
||||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||
|
@ -39,12 +41,13 @@ def calculate_gain(nonlinearity, param=None):
|
|||
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||
else:
|
||||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||
|
||||
|
||||
|
||||
def _calculate_fan_in_and_fan_out(tensor):
|
||||
dimensions = len(tensor)
|
||||
if dimensions < 2:
|
||||
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
||||
|
||||
|
||||
if dimensions == 2: # Linear
|
||||
fan_in = tensor[1]
|
||||
fan_out = tensor[0]
|
||||
|
@ -57,22 +60,25 @@ def _calculate_fan_in_and_fan_out(tensor):
|
|||
fan_in = num_input_fmaps * receptive_field_size
|
||||
fan_out = num_output_fmaps * receptive_field_size
|
||||
return fan_in, fan_out
|
||||
|
||||
|
||||
|
||||
def _calculate_correct_fan(tensor, mode):
|
||||
mode = mode.lower()
|
||||
valid_modes = ['fan_in', 'fan_out']
|
||||
if mode not in valid_modes:
|
||||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||
|
||||
|
||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||
return fan_in if mode == 'fan_in' else fan_out
|
||||
|
||||
|
||||
def kaiming_normal(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
std = gain / math.sqrt(fan)
|
||||
return np.random.normal(0, std, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
|
||||
def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu'):
|
||||
fan = _calculate_correct_fan(inputs_shape, mode)
|
||||
gain = calculate_gain(nonlinearity, a)
|
||||
|
@ -80,6 +86,7 @@ def kaiming_uniform(inputs_shape, a=0, mode='fan_in', nonlinearity='leaky_relu')
|
|||
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
||||
return np.random.uniform(-bound, bound, size=inputs_shape).astype(np.float32)
|
||||
|
||||
|
||||
def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 3, 3)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
|
@ -88,35 +95,41 @@ def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, freq
|
|||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
# return nn.Conv2d(in_channel, out_channel,
|
||||
# kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
|
||||
def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 1, 1)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _conv7x7(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
weight_shape = (out_channel, in_channel, 7, 7)
|
||||
weight = Tensor(kaiming_normal(weight_shape, mode="fan_out", nonlinearity='relu'))
|
||||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _bn(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
|
||||
def _bn_last(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a = math.sqrt(5))
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))
|
||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight, bias_init=0,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
|
||||
class ResidualBlock(nn.Cell):
|
||||
"""
|
||||
ResNet V1 residual block definition.
|
||||
|
@ -133,7 +146,7 @@ class ResidualBlock(nn.Cell):
|
|||
>>> ResidualBlock(3, 256, stride=2)
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
|
||||
def __init__(self,
|
||||
in_channel,
|
||||
out_channel,
|
||||
|
@ -142,54 +155,58 @@ class ResidualBlock(nn.Cell):
|
|||
loss_scale=1,
|
||||
frequency=278):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
|
||||
channel = out_channel // self.expansion
|
||||
self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
self.conv1 = _conv1x1(in_channel, channel, stride=1, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn1 = _bn(channel)
|
||||
|
||||
self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
self.conv2 = _conv3x3(channel, channel, stride=stride, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn2 = _bn(channel)
|
||||
|
||||
self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
self.conv3 = _conv1x1(channel, out_channel, stride=1, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.bn3 = _bn_last(out_channel)
|
||||
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
|
||||
self.down_sample = False
|
||||
|
||||
|
||||
if stride != 1 or in_channel != out_channel:
|
||||
self.down_sample = True
|
||||
self.down_sample_layer = None
|
||||
|
||||
|
||||
if self.down_sample:
|
||||
self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency),
|
||||
damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency),
|
||||
_bn(out_channel)])
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
identity = x
|
||||
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
|
||||
if self.down_sample:
|
||||
identity = self.down_sample_layer(identity)
|
||||
|
||||
|
||||
out = self.add(out, identity)
|
||||
out = self.relu(out)
|
||||
|
||||
|
||||
return out
|
||||
|
||||
|
||||
|
||||
|
||||
class ResNet(nn.Cell):
|
||||
"""
|
||||
ResNet architecture.
|
||||
|
@ -212,7 +229,7 @@ class ResNet(nn.Cell):
|
|||
>>> [1, 2, 2, 2],
|
||||
>>> 10)
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
layer_nums,
|
||||
|
@ -224,15 +241,15 @@ class ResNet(nn.Cell):
|
|||
loss_scale,
|
||||
frequency):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
|
||||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
||||
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
|
||||
|
||||
|
||||
self.conv1 = _conv7x7(3, 64, stride=2, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
self.bn1 = _bn(64)
|
||||
self.relu = P.ReLU()
|
||||
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||
|
||||
|
||||
self.layer1 = self._make_layer(block,
|
||||
layer_nums[0],
|
||||
in_channel=in_channels[0],
|
||||
|
@ -253,7 +270,7 @@ class ResNet(nn.Cell):
|
|||
layer_nums[2],
|
||||
in_channel=in_channels[2],
|
||||
out_channel=out_channels[2],
|
||||
stride=strides[2],damping=damping,
|
||||
stride=strides[2], damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
self.layer4 = self._make_layer(block,
|
||||
|
@ -264,11 +281,11 @@ class ResNet(nn.Cell):
|
|||
damping=damping,
|
||||
loss_scale=loss_scale,
|
||||
frequency=frequency)
|
||||
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
||||
def _make_layer(self, block, layer_num, in_channel, out_channel, stride,
|
||||
damping, loss_scale, frequency):
|
||||
"""
|
||||
|
@ -288,36 +305,36 @@ class ResNet(nn.Cell):
|
|||
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
|
||||
"""
|
||||
layers = []
|
||||
|
||||
|
||||
resnet_block = block(in_channel, out_channel, stride=stride,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
layers.append(resnet_block)
|
||||
|
||||
|
||||
for _ in range(1, layer_num):
|
||||
resnet_block = block(out_channel, out_channel, stride=1,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
layers.append(resnet_block)
|
||||
|
||||
|
||||
return nn.SequentialCell(layers)
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
c1, argmax = self.maxpool(x)
|
||||
|
||||
|
||||
c2 = self.layer1(c1)
|
||||
c3 = self.layer2(c2)
|
||||
c4 = self.layer3(c3)
|
||||
c5 = self.layer4(c4)
|
||||
|
||||
|
||||
out = self.mean(c5, (2, 3))
|
||||
out = self.flatten(out)
|
||||
out = self.end_point(out)
|
||||
|
||||
|
||||
return out
|
||||
|
||||
|
||||
|
||||
|
||||
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278):
|
||||
"""
|
||||
Get ResNet50 neural network.
|
|
@ -13,42 +13,47 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""momentum"""
|
||||
import numpy as np
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
from mindspore.common.parameter import ParameterTuple
|
||||
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
|
||||
from mindspore.common.initializer import initializer
|
||||
from model.grad_reducer_thor import DistributedGradReducerThor
|
||||
from cus_ops.cus_matmul_cube_fracz_right_mul import CusMatMulCubeFraczRightMul
|
||||
from cus_ops.cus_fused_abs_max1 import CusFusedAbsMax1
|
||||
from cus_ops.cus_matmul_cube_fracz_left_cast import CusMatMulCubeFraczLeftCast
|
||||
from cus_ops.cus_matmul_cube_dense_left import CusMatMulCubeDenseLeft
|
||||
from cus_ops.cus_matmul_cube_dense_right import CusMatMulCubeDenseRight
|
||||
|
||||
from cus_ops.cus_matmul_cube_fracz_left_cast import CusMatMulCubeFraczLeftCast
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.parameter import ParameterTuple
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.parallel._utils import _get_device_num, _get_mirror_mean
|
||||
|
||||
from cus_ops.cus_matmul_cube_dense_left import CusMatMulCubeDenseLeft
|
||||
from cus_ops.cus_matmul_cube_fracz_right_mul import CusMatMulCubeFraczRightMul
|
||||
from model.grad_reducer_thor import DistributedGradReducerThor
|
||||
|
||||
momentum_opt = C.MultitypeFuncGraph("momentum_opt")
|
||||
|
||||
|
||||
@momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||
def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment):
|
||||
"""Apply momentum optimizer to the weight parameter using Tensor."""
|
||||
success = True
|
||||
success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum))
|
||||
return success
|
||||
|
||||
|
||||
|
||||
op_add = P.AddN()
|
||||
apply_decay = C.MultitypeFuncGraph("apply_decay")
|
||||
|
||||
|
||||
|
||||
@apply_decay.register("Number", "Bool", "Tensor", "Tensor")
|
||||
def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
|
||||
"""Get grad with weight_decay."""
|
||||
if if_apply:
|
||||
return op_add((weight * weight_decay, gradient))
|
||||
return gradient
|
||||
|
||||
|
||||
|
||||
class THOR(Optimizer):
|
||||
def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, loss_scale=1.0,
|
||||
def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0,
|
||||
loss_scale=1.0,
|
||||
decay_filter=lambda x: x.name not in []):
|
||||
super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
||||
if isinstance(momentum, float) and momentum < 0.0:
|
||||
|
@ -93,9 +98,10 @@ class THOR(Optimizer):
|
|||
self.matrix_A_inv = ()
|
||||
self.matrix_G_inv = ()
|
||||
self.matrix_max_inv = ()
|
||||
|
||||
|
||||
for i in range(54):
|
||||
self.matrix_max_inv = self.matrix_max_inv + (Parameter(initializer(1, [1], mstype.float32), name="matrix_max"+str(i), requires_grad=False), )
|
||||
self.matrix_max_inv = self.matrix_max_inv + (
|
||||
Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),)
|
||||
self.log = P.Log()
|
||||
self.exp = P.Exp()
|
||||
self.sqrt = P.Sqrt()
|
||||
|
@ -105,7 +111,7 @@ class THOR(Optimizer):
|
|||
self.thor = True
|
||||
self.weight_decay = weight_decay * loss_scale
|
||||
self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
|
||||
|
||||
|
||||
def construct(self, gradients):
|
||||
params = self.params
|
||||
moments = self.moments
|
||||
|
@ -124,9 +130,9 @@ class THOR(Optimizer):
|
|||
matrix_G = F.depend(matrix_G, g)
|
||||
A_max = F.depend(A_max, g)
|
||||
G_max = F.depend(G_max, g)
|
||||
matrix_A_allreduce = matrix_A_allreduce + (matrix_A, )
|
||||
matrix_G_allreduce = matrix_G_allreduce + (matrix_G, )
|
||||
matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max, )
|
||||
matrix_A_allreduce = matrix_A_allreduce + (matrix_A,)
|
||||
matrix_G_allreduce = matrix_G_allreduce + (matrix_G,)
|
||||
matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,)
|
||||
matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,)
|
||||
matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce)
|
||||
matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce)
|
||||
|
@ -182,13 +188,13 @@ class THOR(Optimizer):
|
|||
new_grads = new_grads + (g,)
|
||||
else:
|
||||
g = self.cube_matmul_left(matrix_G, g)
|
||||
g =self.cube_matmul_right_mul(g, matrix_A, matrix_max)
|
||||
g = self.cube_matmul_right_mul(g, matrix_A, matrix_max)
|
||||
new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2])
|
||||
gradients = new_grads
|
||||
|
||||
|
||||
if self.weight_decay > 0:
|
||||
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags,
|
||||
params, gradients)
|
||||
params, gradients)
|
||||
gradients = self.scale_grad(gradients)
|
||||
lr = self.get_lr()
|
||||
success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments)
|
|
@ -13,27 +13,29 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
import numpy as np
|
||||
from mindspore._checkparam import check_bool, twice, check_int_positive
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.layer.activation import get_activation
|
||||
from mindspore._extends import cell_attr_register
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.nn.layer.activation import get_activation
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
from cus_ops.cus_batch_matmul import CusBatchMatMul
|
||||
from cus_ops.cus_cholesky_trsm import CusCholeskyTrsm
|
||||
from cus_ops.cus_fused_abs_max1 import CusFusedAbsMax1
|
||||
from cus_ops.cus_img2col import CusImg2Col
|
||||
from cus_ops.cus_matmul_cube import CusMatMulCube
|
||||
from cus_ops.cus_matrix_combine import CusMatrixCombine
|
||||
from cus_ops.cus_cholesky_trsm import CusCholeskyTrsm
|
||||
from cus_ops.cus_img2col import CusImg2Col
|
||||
from cus_ops.cus_fused_abs_max1 import CusFusedAbsMax1
|
||||
from cus_ops.cus_batch_matmul import CusBatchMatMul
|
||||
from cus_ops.cus_transpose02314 import CusTranspose02314
|
||||
|
||||
|
||||
C0 = 16
|
||||
|
||||
|
||||
def caculate_device_shape(matrix_dim, channel, is_A):
|
||||
if is_A:
|
||||
if channel // C0 == 0:
|
||||
|
@ -41,11 +43,13 @@ def caculate_device_shape(matrix_dim, channel, is_A):
|
|||
return (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim)
|
||||
else:
|
||||
return (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim)
|
||||
|
||||
|
||||
|
||||
class _Conv(Cell):
|
||||
r"""Applies a N-D convolution over an input signal composed of several input
|
||||
planes.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
|
@ -73,23 +77,23 @@ class _Conv(Cell):
|
|||
self.has_bias = has_bias
|
||||
if not (isinstance(in_channels, int) and in_channels > 0):
|
||||
raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op passed '
|
||||
+str(in_channels)+ ', should be a int and greater than 0.')
|
||||
+ str(in_channels) + ', should be a int and greater than 0.')
|
||||
if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \
|
||||
(not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
||||
(not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
||||
kernel_size[0] < 1 or kernel_size[1] < 1:
|
||||
raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed '
|
||||
+str(self.kernel_size)+', should be a int or tuple and equal to or greater than 1.')
|
||||
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
|
||||
if in_channels % group != 0:
|
||||
raise ValueError('Attr \'in_channels\' of \'Conv2D\' Op must be divisible by '
|
||||
'attr \'group\' of \'Conv2D\' Op.')
|
||||
if out_channels % group != 0:
|
||||
raise ValueError('Attr \'out_channels\' of \'Conv2D\' Op must be divisible by '
|
||||
'attr \'group\' of \'Conv2D\' Op.')
|
||||
|
||||
|
||||
self.weight = Parameter(initializer(
|
||||
weight_init, [out_channels, in_channels // group, *kernel_size]),
|
||||
name='weight')
|
||||
|
||||
name='weight')
|
||||
|
||||
if check_bool(has_bias):
|
||||
self.bias = Parameter(_initializer(
|
||||
bias_init, [out_channels]), name='bias')
|
||||
|
@ -97,10 +101,11 @@ class _Conv(Cell):
|
|||
if bias_init != 'zeros':
|
||||
logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.")
|
||||
self.bias = None
|
||||
|
||||
|
||||
def construct(self, *inputs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
|
||||
class Conv2d_Thor(_Conv):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
|
@ -120,7 +125,7 @@ class Conv2d_Thor(_Conv):
|
|||
bias_init='zeros'):
|
||||
self.thor = True
|
||||
ksizes = (1, kernel_size, kernel_size, 1)
|
||||
self.hw = kernel_size*kernel_size
|
||||
self.hw = kernel_size * kernel_size
|
||||
strides = (1, stride, stride, 1)
|
||||
kernel_size = twice(kernel_size)
|
||||
super(Conv2d_Thor, self).__init__(
|
||||
|
@ -146,26 +151,37 @@ class Conv2d_Thor(_Conv):
|
|||
dilation=self.dilation,
|
||||
group=self.group
|
||||
)
|
||||
|
||||
self.img2col = CusImg2Col(ksizes = ksizes, strides = strides)
|
||||
|
||||
self.img2col = CusImg2Col(ksizes=ksizes, strides=strides)
|
||||
self.cube_matmul = CusMatMulCube(transpose_a=True)
|
||||
self.matrix_combine = CusMatrixCombine()
|
||||
self.cholesky = CusCholeskyTrsm()
|
||||
self.transpose02314 = CusTranspose02314()
|
||||
self.matrix_A_dim = self.in_channels*self.kernel_size[0]*self.kernel_size[1]
|
||||
self.matrix_A_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1]
|
||||
self.matrix_G_dim = self.out_channels
|
||||
self.matrix_A_device_shape, self.matrix_A_device_dim = caculate_device_shape(self.matrix_A_dim, self.in_channels, True)
|
||||
self.matrix_G_device_shape, self.matrix_G_device_dim = caculate_device_shape(self.matrix_G_dim, self.in_channels, False)
|
||||
self.matrix_A_device_temp_shape = (self.matrix_A_device_shape[0], self.matrix_A_device_shape[2], self.matrix_A_device_shape[1], self.matrix_A_device_shape[3])
|
||||
self.matrix_G_device_temp_shape = (self.matrix_G_device_shape[0], self.matrix_G_device_shape[2], self.matrix_G_device_shape[1], self.matrix_G_device_shape[3])
|
||||
self.matrix_A_inv = Parameter(Tensor(np.reshape(np.identity(self.matrix_A_device_dim).astype(np.float16), self.matrix_A_device_shape)), name='matrix_A_inv', requires_grad=False)
|
||||
self.matrix_A_device_shape, self.matrix_A_device_dim = caculate_device_shape(self.matrix_A_dim,
|
||||
self.in_channels, True)
|
||||
self.matrix_G_device_shape, self.matrix_G_device_dim = caculate_device_shape(self.matrix_G_dim,
|
||||
self.in_channels, False)
|
||||
self.matrix_A_device_temp_shape = (
|
||||
self.matrix_A_device_shape[0], self.matrix_A_device_shape[2], self.matrix_A_device_shape[1],
|
||||
self.matrix_A_device_shape[3])
|
||||
self.matrix_G_device_temp_shape = (
|
||||
self.matrix_G_device_shape[0], self.matrix_G_device_shape[2], self.matrix_G_device_shape[1],
|
||||
self.matrix_G_device_shape[3])
|
||||
self.matrix_A_inv = Parameter(
|
||||
Tensor(np.reshape(np.identity(self.matrix_A_device_dim).astype(np.float16), self.matrix_A_device_shape)),
|
||||
name='matrix_A_inv', requires_grad=False)
|
||||
self.A_inv_max = Parameter(initializer(0, [1], mstype.float32), name="A_inv_max", requires_grad=False)
|
||||
self.matrix_G_inv = Parameter(Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)), name="matrix_G_inv", requires_grad=False)
|
||||
|
||||
self.matrix_G_inv = Parameter(
|
||||
Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape)),
|
||||
name="matrix_G_inv", requires_grad=False)
|
||||
|
||||
self.G_inv_max = Parameter(initializer(0, [1], mstype.float32), name="G_inv_max", requires_grad=False)
|
||||
self.fake_G = Tensor(np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape))
|
||||
self.fake_G_inv_max = Tensor(np.zeros([1,]).astype(np.float32))
|
||||
|
||||
self.fake_G = Tensor(
|
||||
np.reshape(np.identity(self.matrix_G_device_dim).astype(np.float16), self.matrix_G_device_shape))
|
||||
self.fake_G_inv_max = Tensor(np.zeros([1, ]).astype(np.float32))
|
||||
|
||||
self.shape = P.Shape()
|
||||
self.reshape = P.Reshape()
|
||||
self.transpose = P.Transpose()
|
||||
|
@ -178,9 +194,10 @@ class Conv2d_Thor(_Conv):
|
|||
self.channels_slice_flag = False
|
||||
if self.in_channels % C0 != 0:
|
||||
self.channels_slice_flag = True
|
||||
|
||||
|
||||
self.padA_flag = False
|
||||
if (self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim and self.matrix_A_dim > self.diag_block_dim:
|
||||
if (
|
||||
self.matrix_A_dim // self.diag_block_dim) * self.diag_block_dim != self.matrix_A_dim and self.matrix_A_dim > self.diag_block_dim:
|
||||
self.padA_flag = True
|
||||
pad_dim = self.diag_block_dim - self.matrix_A_dim % self.diag_block_dim
|
||||
self.padA = P.Pad(((0, pad_dim), (0, pad_dim)))
|
||||
|
@ -191,16 +208,16 @@ class Conv2d_Thor(_Conv):
|
|||
self.slice = P.Slice()
|
||||
self.gather = P.GatherV2()
|
||||
self.freq = Tensor(frequency, mstype.int32)
|
||||
self.loss_scale = Tensor(1/loss_scale, mstype.float16)
|
||||
self.loss_scale = Tensor(1 / loss_scale, mstype.float16)
|
||||
self.axis = 0
|
||||
|
||||
|
||||
dampingA_dim = self.matrix_A_dim
|
||||
if (self.matrix_A_dim % self.diag_block_dim) != 0 and self.matrix_A_dim > self.diag_block_dim:
|
||||
dampingA_dim = (self.matrix_A_dim // self.diag_block_dim + 1) * self.diag_block_dim
|
||||
dampingG_dim = self.matrix_G_dim
|
||||
if (self.matrix_G_dim % self.diag_block_dim) != 0 and self.matrix_G_dim > self.diag_block_dim:
|
||||
dampingG_dim = (self.matrix_G_dim // self.diag_block_dim + 1) * self.diag_block_dim
|
||||
|
||||
|
||||
self.dampingA = Tensor(np.identity(dampingA_dim), mstype.float32)
|
||||
self.dampingG = Tensor(np.identity(dampingG_dim), mstype.float32)
|
||||
self.fused_abs_max1 = CusFusedAbsMax1([self.matrix_A_dim, self.matrix_A_dim])
|
||||
|
@ -211,50 +228,50 @@ class Conv2d_Thor(_Conv):
|
|||
self.getG = P.InsertGradientOf(self.save_gradient)
|
||||
|
||||
def save_gradient(self, dout):
|
||||
out = dout
|
||||
dout = self.mul(dout, self.loss_scale)
|
||||
dout = self.mul(dout, 32.0)
|
||||
dout = self.transpose02314(dout)
|
||||
dout_shape = self.shape(dout)
|
||||
normalizer = dout_shape[0]
|
||||
|
||||
matrix_G = self.cube_matmul(dout, dout)
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_G = self.mul(matrix_G, 1.0/normalizer)
|
||||
damping_step = self.gather(self.damping, self.cov_step, 0)
|
||||
self.cov_step = self.cov_step + self.freq
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.mul(damping_step, 32.0/normalizer)
|
||||
damping = self.sqrt(damping)
|
||||
dampingG = self.cast(self.dampingG, mstype.float32)
|
||||
matrix_G = matrix_G + damping * dampingG
|
||||
|
||||
matrix_G_inv = self.cholesky(matrix_G)
|
||||
matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max)
|
||||
self.G_inv_max = matrix_G_inv_max
|
||||
matrix_G_inv = self.matrix_combine(matrix_G_inv)
|
||||
matrix_G_inv_shape = self.shape(matrix_G_inv)
|
||||
matrix_G_inv = self.reshape(matrix_G_inv, self.matrix_G_device_temp_shape)
|
||||
matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3))
|
||||
matrix_G = self.cast(matrix_G_inv, mstype.float16)
|
||||
self.matrix_G_inv = matrix_G
|
||||
return out
|
||||
|
||||
out = dout
|
||||
dout = self.mul(dout, self.loss_scale)
|
||||
dout = self.mul(dout, 32.0)
|
||||
dout = self.transpose02314(dout)
|
||||
dout_shape = self.shape(dout)
|
||||
normalizer = dout_shape[0]
|
||||
|
||||
matrix_G = self.cube_matmul(dout, dout)
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_G = self.mul(matrix_G, 1.0 / normalizer)
|
||||
damping_step = self.gather(self.damping, self.cov_step, 0)
|
||||
self.cov_step = self.cov_step + self.freq
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.mul(damping_step, 32.0 / normalizer)
|
||||
damping = self.sqrt(damping)
|
||||
dampingG = self.cast(self.dampingG, mstype.float32)
|
||||
matrix_G = matrix_G + damping * dampingG
|
||||
|
||||
matrix_G_inv = self.cholesky(matrix_G)
|
||||
matrix_G_inv = self.vector_matmul(matrix_G_inv, matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv)
|
||||
matrix_G_inv_max = self.fused_abs_max2(matrix_G_inv_max)
|
||||
self.G_inv_max = matrix_G_inv_max
|
||||
matrix_G_inv = self.matrix_combine(matrix_G_inv)
|
||||
matrix_G_inv_shape = self.shape(matrix_G_inv)
|
||||
matrix_G_inv = self.reshape(matrix_G_inv, self.matrix_G_device_temp_shape)
|
||||
matrix_G_inv = self.transpose(matrix_G_inv, (2, 0, 1, 3))
|
||||
matrix_G = self.cast(matrix_G_inv, mstype.float16)
|
||||
self.matrix_G_inv = matrix_G
|
||||
return out
|
||||
|
||||
def construct(self, x):
|
||||
if self.thor:
|
||||
matrix_A = self.img2col(x)
|
||||
matrix_A_shape = self.shape(matrix_A)
|
||||
normalizer = matrix_A_shape[0]
|
||||
matrix_A = self.cube_matmul(matrix_A, matrix_A)
|
||||
|
||||
|
||||
if self.channels_slice_flag:
|
||||
matrix_A = self.reshape(matrix_A, (self.hw, C0, self.hw, C0))
|
||||
matrix_A = self.slice(matrix_A, (0, 0, 0, 0), (self.hw, self.in_channels, self.hw, self.in_channels))
|
||||
matrix_A = self.reshape(matrix_A, (self.matrix_A_dim, self.matrix_A_dim))
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_A = self.mul(matrix_A, 1.0/normalizer)
|
||||
matrix_A = self.mul(matrix_A, 1.0 / normalizer)
|
||||
if self.padA_flag:
|
||||
matrix_A = self.padA(matrix_A)
|
||||
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
||||
|
@ -273,7 +290,7 @@ class Conv2d_Thor(_Conv):
|
|||
in_channels = self.in_channels
|
||||
if self.padA_flag:
|
||||
matrix_A_inv = self.slice(matrix_A_inv, (0, 0), (self.matrix_A_dim, self.matrix_A_dim))
|
||||
|
||||
|
||||
if self.device_shape_pad_flag:
|
||||
matrix_A_inv = self.reshape(matrix_A_inv, (self.hw, self.in_channels, self.hw, self.in_channels))
|
||||
matrix_A_inv = self.device_shape_pad(matrix_A_inv)
|
||||
|
@ -286,31 +303,32 @@ class Conv2d_Thor(_Conv):
|
|||
out = self.getG(out)
|
||||
else:
|
||||
out = self.conv2d(x, self.weight)
|
||||
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def extra_repr(self):
|
||||
s = 'input_channels={}, output_channels={}, kernel_size={},' \
|
||||
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
|
||||
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
|
||||
'group={}, data_format={}, has_bias={},' \
|
||||
'weight_init={}, bias_init={}'.format(
|
||||
self.in_channels,
|
||||
self.out_channels,
|
||||
self.kernel_size,
|
||||
self.stride,
|
||||
self.pad_mode,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.group,
|
||||
self.data_format,
|
||||
self.has_bias,
|
||||
self.weight,
|
||||
self.bias)
|
||||
|
||||
'weight_init={}, bias_init={}'.format(
|
||||
self.in_channels,
|
||||
self.out_channels,
|
||||
self.kernel_size,
|
||||
self.stride,
|
||||
self.pad_mode,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.group,
|
||||
self.data_format,
|
||||
self.has_bias,
|
||||
self.weight,
|
||||
self.bias)
|
||||
|
||||
if self.has_bias:
|
||||
s += ', bias={}'.format(self.bias)
|
||||
return s
|
||||
|
||||
|
||||
|
||||
class Dense_Thor(Cell):
|
||||
@cell_attr_register(attrs=['has_bias', 'activation'])
|
||||
def __init__(self,
|
||||
|
@ -330,30 +348,30 @@ class Dense_Thor(Cell):
|
|||
self.thor = True
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||||
weight_init.shape()[1] != in_channels:
|
||||
weight_init.shape()[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
|
||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||
|
||||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
|
||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||
|
||||
|
||||
self.matmul = P.MatMul(transpose_b=True)
|
||||
self.bias_add = P.BiasAdd()
|
||||
|
||||
|
||||
self.activation = get_activation(activation)
|
||||
self.activation_flag = self.activation is not None
|
||||
|
||||
|
||||
self.matrix_A_inv = Parameter(Tensor(np.zeros([128, 128, 16, 16]).astype(np.float16)), name='matrix_A_inv',
|
||||
requires_grad=False)
|
||||
self.matrix_G_inv = Parameter(Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)), name="matrix_G_inv",
|
||||
requires_grad=False)
|
||||
self.fake_G = Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16))
|
||||
|
||||
|
||||
self.matmul = P.MatMul(transpose_b=True)
|
||||
self.cube_matmul = CusMatMulCube(transpose_a=True)
|
||||
self.matrix_combine = CusMatrixCombine()
|
||||
|
@ -365,7 +383,7 @@ class Dense_Thor(Cell):
|
|||
self.mul = P.Mul()
|
||||
self.cast = P.Cast()
|
||||
self.damping = Tensor(damping)
|
||||
self.loss_scale = Tensor(1/loss_scale, mstype.float16)
|
||||
self.loss_scale = Tensor(1 / loss_scale, mstype.float16)
|
||||
self.vector_matmul = CusBatchMatMul()
|
||||
self.pad = P.Pad(((0, 24), (0, 24)))
|
||||
self.pad1 = P.Pad(((0, 8), (0, 8)))
|
||||
|
@ -415,14 +433,14 @@ class Dense_Thor(Cell):
|
|||
matrix_G_inv = self.cast(matrix_G_inv, mstype.float16)
|
||||
self.matrix_G_inv = matrix_G_inv
|
||||
return out
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
if self.thor:
|
||||
inputs = self.cube_matmul(x, x)
|
||||
normalizer = 32
|
||||
normalizer = self.cast(normalizer, ms.float32)
|
||||
matrix_A = self.mul(inputs, 1.0 / normalizer)
|
||||
|
||||
|
||||
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
||||
damping_step = self.cast(damping_step, mstype.float32)
|
||||
damping = self.sqrt(damping_step)
|
||||
|
@ -430,11 +448,11 @@ class Dense_Thor(Cell):
|
|||
matrix_A = matrix_A + damping * dampingA
|
||||
matrix_A_inv = self.cholesky(matrix_A)
|
||||
matrix_A_inv = self.vector_matmul(matrix_A_inv, matrix_A_inv)
|
||||
|
||||
|
||||
matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv)
|
||||
matrix_A_inv_max = self.fused_abs_max2(matrix_A_inv_max)
|
||||
self.A_inv_max = matrix_A_inv_max
|
||||
|
||||
|
||||
matrix_A_inv = self.matrix_combine(matrix_A_inv)
|
||||
matrix_A_inv_shape = self.shape(matrix_A_inv)
|
||||
matrix_A_inv = self.reshape(matrix_A_inv, (matrix_A_inv_shape[0] / 16, 16, matrix_A_inv_shape[0] / 16, 16))
|
||||
|
@ -446,20 +464,20 @@ class Dense_Thor(Cell):
|
|||
output = self.getG(output)
|
||||
else:
|
||||
output = self.matmul(x, self.weight)
|
||||
|
||||
|
||||
if self.has_bias:
|
||||
output = self.bias_add(output, self.bias)
|
||||
if self.activation_flag:
|
||||
return self.activation(output)
|
||||
return output
|
||||
|
||||
|
||||
def extend_repr(self):
|
||||
str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
|
||||
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
|
||||
.format(self.in_channels, self.out_channels, self.weight, self.has_bias)
|
||||
if self.has_bias:
|
||||
str_info = str_info + ', bias={}'.format(self.bias)
|
||||
|
||||
|
||||
if self.activation_flag:
|
||||
str_info = str_info + ', activation={}'.format(self.activation)
|
||||
|
||||
|
||||
return str_info
|
|
@ -13,62 +13,54 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train_imagenet."""
|
||||
import os
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
|
||||
import mindspore.dataset.engine as de
|
||||
import numpy as np
|
||||
from dataset_imagenet import create_dataset
|
||||
from lr_generator import get_lr, warmup_cosine_annealing_lr
|
||||
from config_imagenet import config
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
|
||||
from mindspore.train.model import ParallelMode
|
||||
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore.communication.management import init
|
||||
|
||||
import math
|
||||
import mindspore.nn as nn
|
||||
from crossentropy import CrossEntropy
|
||||
from var_init import default_recurisive_init, KaimingNormal
|
||||
from mindspore.common import initializer as weight_init
|
||||
|
||||
from second_order.thor import THOR
|
||||
from mindspore.train.model import ParallelMode
|
||||
from second_order.model_second_order import Model
|
||||
from second_order.resnet import resnet50
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from second_order.thor import THOR
|
||||
|
||||
from config_imagenet import config
|
||||
from crossentropy import CrossEntropy
|
||||
from dataset_imagenet import create_dataset
|
||||
from lr_generator import get_lr, warmup_cosine_annealing_lr
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
|
||||
|
||||
args_opt = parser.parse_args()
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=device_id)
|
||||
context.set_context(enable_task_sink=True)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
|
||||
|
||||
def get_second_order_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for i in range(total_steps):
|
||||
epoch = (i+1)/steps_per_epoch
|
||||
base = (1.0 - float(epoch)/total_epochs)**decay
|
||||
epoch = (i + 1) / steps_per_epoch
|
||||
base = (1.0 - float(epoch) / total_epochs) ** decay
|
||||
lr = lr_init * base
|
||||
lr_each_step.append(lr)
|
||||
current_step = global_step
|
||||
|
@ -77,11 +69,12 @@ def get_second_order_lr(global_step, lr_init, decay, total_epochs, steps_per_epo
|
|||
learning_rate = lr_each_step[current_step:]
|
||||
return learning_rate
|
||||
|
||||
|
||||
def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||
damping_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for step in range(total_steps):
|
||||
epoch = (step+1) / steps_per_epoch
|
||||
epoch = (step + 1) / steps_per_epoch
|
||||
damping = damping_init * (decay_rate ** (epoch / 10))
|
||||
damping_each_step.append(damping)
|
||||
|
||||
|
@ -91,6 +84,7 @@ def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs
|
|||
print("damping_is=========", damping)
|
||||
return damping
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if args_opt.do_eval:
|
||||
print("eval")
|
||||
|
@ -104,7 +98,7 @@ if __name__ == '__main__':
|
|||
init()
|
||||
else:
|
||||
print(" ")
|
||||
|
||||
|
||||
epoch_size = config.epoch_size
|
||||
damping = get_second_order_damping(0, 0.03, 0.87, 50, 5004)
|
||||
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
||||
|
@ -128,8 +122,8 @@ if __name__ == '__main__':
|
|||
config.eta_min))
|
||||
else:
|
||||
lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
|
||||
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
|
||||
lr_decay_mode='poly'))
|
||||
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
|
||||
lr_decay_mode='poly'))
|
||||
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
|
||||
config.momentum, damping, config.frequency,
|
||||
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
||||
|
@ -137,8 +131,9 @@ if __name__ == '__main__':
|
|||
filter(lambda x: 'spatial_norm' in x.name, net.get_parameters()),
|
||||
config.weight_decay, config.loss_scale)
|
||||
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale, keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
|
||||
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
||||
keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
|
||||
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
loss_cb = LossMonitor()
|
||||
cb = [time_cb, loss_cb]
|
Loading…
Reference in New Issue