forked from mindspore-Ecosystem/mindspore
add pretrained option to resnet50_imagenet
This commit is contained in:
parent
41456ac824
commit
d85102acfb
|
@ -28,7 +28,7 @@ config = ed({
|
|||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_steps": 195,
|
||||
"save_checkpoint_steps": 1950,
|
||||
"keep_checkpoint_max": 10,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 5,
|
||||
|
|
|
@ -45,6 +45,7 @@ Parameters for both training and inference can be set in config.py.
|
|||
"momentum": 0.9, # momentum optimizer
|
||||
"weight_decay": 1e-4, # weight decay
|
||||
"epoch_size": 90, # only valid for taining, which is always 1 for inference
|
||||
"pretrained_epoch_size": 1, # epoch size that model has been trained before load pretrained checkpoint
|
||||
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||
"image_height": 224, # image height
|
||||
"image_width": 224, # image width
|
||||
|
@ -68,10 +69,11 @@ Parameters for both training and inference can be set in config.py.
|
|||
|
||||
```
|
||||
# distributed training
|
||||
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
|
||||
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
# standalone training
|
||||
Usage: sh run_standalone_train.sh [DATASET_PATH]
|
||||
Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
@ -81,8 +83,14 @@ Usage: sh run_standalone_train.sh [DATASET_PATH]
|
|||
# distributed training example(8 pcs)
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||
|
||||
# If you want to load pretrained ckpt file
|
||||
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./pretrained.ckpt
|
||||
|
||||
# standalone training example(1 pcs)
|
||||
sh run_standalone_train.sh dataset/ilsvrc
|
||||
|
||||
# If you want to load pretrained ckpt file
|
||||
sh run_standalone_train.sh dataset/ilsvrc ./pretrained.ckpt
|
||||
```
|
||||
|
||||
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||
|
|
|
@ -24,6 +24,7 @@ config = ed({
|
|||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 90,
|
||||
"pretrained_epoch_size": 1,
|
||||
"buffer_size": 1000,
|
||||
"image_height": 224,
|
||||
"image_width": 224,
|
||||
|
|
|
@ -17,12 +17,11 @@ import math
|
|||
import numpy as np
|
||||
|
||||
|
||||
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
global_step(int): total steps of the training
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
|
@ -83,8 +82,6 @@ def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, st
|
|||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
current_step = global_step
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
learning_rate = np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
return learning_rate
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ]
|
||||
if [ $# != 2 ] && [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]"
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -30,6 +30,10 @@ get_real_path(){
|
|||
|
||||
PATH1=$(get_real_path $1)
|
||||
PATH2=$(get_real_path $2)
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
PATH3=$(get_real_path $3)
|
||||
fi
|
||||
|
||||
if [ ! -f "$PATH1" ]
|
||||
then
|
||||
|
@ -43,6 +47,12 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f "$PATH3" ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
|
@ -60,6 +70,11 @@ do
|
|||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log &
|
||||
else
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log &
|
||||
fi
|
||||
cd ..
|
||||
done
|
||||
|
|
|
@ -14,9 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 1 ]
|
||||
if [ $# != 1 ] && [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: sh run_standalone_train.sh [DATASET_PATH]"
|
||||
echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -29,6 +29,10 @@ get_real_path(){
|
|||
}
|
||||
|
||||
PATH1=$(get_real_path $1)
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
PATH2=$(get_real_path $2)
|
||||
fi
|
||||
|
||||
if [ ! -d "$PATH1" ]
|
||||
then
|
||||
|
@ -36,6 +40,12 @@ then
|
|||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f "$PATH2" ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=1
|
||||
export DEVICE_ID=0
|
||||
|
@ -51,5 +61,10 @@ cp *.sh ./train
|
|||
cd ./train || exit
|
||||
echo "start training for device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --do_train=True --dataset_path=$PATH1 &> log &
|
||||
if [ $# == 1 ]
|
||||
then
|
||||
python train.py --do_train=True --dataset_path=$PATH1 &> log &
|
||||
else
|
||||
python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log &
|
||||
fi
|
||||
cd ..
|
||||
|
|
|
@ -28,6 +28,7 @@ from mindspore.train.model import Model, ParallelMode
|
|||
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.initializer as weight_init
|
||||
|
@ -39,6 +40,7 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|||
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
||||
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
@ -58,15 +60,20 @@ if __name__ == '__main__':
|
|||
net = resnet50(class_num=config.class_num)
|
||||
|
||||
# weight init
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if args_opt.pre_trained:
|
||||
param_dict = load_checkpoint(args_opt.pre_trained)
|
||||
load_param_into_net(net, param_dict)
|
||||
epoch_size = config.epoch_size - config.pretrained_epoch_size
|
||||
else:
|
||||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
|
||||
|
@ -78,9 +85,11 @@ if __name__ == '__main__':
|
|||
step_size = dataset.get_dataset_size()
|
||||
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max,
|
||||
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
|
||||
lr_decay_mode='cosine'))
|
||||
lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
|
||||
total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
|
||||
if args_opt.pre_trained:
|
||||
lr = lr[config.pretrained_epoch_size * step_size:]
|
||||
lr = Tensor(lr)
|
||||
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||
config.weight_decay, config.loss_scale)
|
||||
|
|
Loading…
Reference in New Issue