Modify the ST test script and example script of bert model

This commit is contained in:
wsc 2020-04-28 10:31:33 +08:00
parent 728876fc75
commit d428fc1166
7 changed files with 28 additions and 211 deletions

View File

@ -78,7 +78,7 @@ It contains of parameters of BERT model and options for training, which is set i
### Options:
```
Pre-Training:
bert_network version of BERT model: base | large, default is base
bert_network version of BERT model: base | nezha, default is base
loss_scale_value initial value of loss scale: N, default is 2^32
scale_factor factor used to update loss scale: N, default is 2
scale_window steps for once updatation of loss scale: N, default is 1000

View File

@ -26,30 +26,36 @@ cfg = edict({
'optimizer': 'Lamb',
'AdamWeightDecayDynamicLR': edict({
'learning_rate': 3e-5,
'end_learning_rate': 0.0,
'end_learning_rate': 1e-7,
'power': 5.0,
'weight_decay': 1e-5,
'eps': 1e-6,
}),
'Lamb': edict({
'start_learning_rate': 3e-5,
'end_learning_rate': 0.0,
'end_learning_rate': 1e-7,
'power': 10.0,
'warmup_steps': 10000,
'weight_decay': 0.01,
'eps': 1e-6,
'decay_filter': lambda x: False,
}),
'Momentum': edict({
'learning_rate': 2e-5,
'momentum': 0.9,
}),
})
'''
Including two kinds of network: \
base: Goole BERT-base(the base version of BERT model).
large: BERT-NEZHA(a Chinese pretrained language model developed by Huawei, which introduced a improvement of \
Functional Relative Posetional Encoding as an effective positional encoding scheme).
'''
if cfg.bert_network == 'base':
bert_net_cfg = BertConfig(
batch_size=16,
batch_size=32,
seq_length=128,
vocab_size=21136,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
@ -66,13 +72,13 @@ if cfg.bert_network == 'base':
dtype=mstype.float32,
compute_type=mstype.float16,
)
else:
if cfg.bert_network == 'nezha':
bert_net_cfg = BertConfig(
batch_size=16,
batch_size=32,
seq_length=128,
vocab_size=21136,
vocab_size=21128,
hidden_size=1024,
num_hidden_layers=12,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",

View File

@ -31,7 +31,7 @@ def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", e
files = os.listdir(data_dir)
data_files = []
for file_name in files:
data_files.append(data_dir+file_name)
data_files.append(os.path.join(data_dir, file_name))
ds = de.TFRecordDataset(data_files, schema_dir,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],

View File

@ -16,17 +16,15 @@
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH MINDSPORE_PATH"
echo "for example: sh run_distribute_pretrain.sh 8 40 /path/zh-wiki/ /path/Schema.json /path/hccl.json /path/mindspore"
echo "sh run_distribute_pretrain.sh DEVICE_NUM EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_HCCL_CONFIG_PATH"
echo "for example: sh run_distribute_pretrain.sh 8 40 /path/zh-wiki/ /path/Schema.json /path/hccl.json"
echo "It is better to use absolute path."
echo "=============================================================================================================="
EPOCH_SIZE=$2
DATA_DIR=$3
SCHEMA_DIR=$4
MINDSPORE_PATH=$6
export PYTHONPATH=$MINDSPORE_PATH/build/package:$PYTHONPATH
export MINDSPORE_HCCL_CONFIG_PATH=$5
export RANK_SIZE=$1

View File

@ -16,16 +16,14 @@
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR MINDSPORE_PATH"
echo "for example: sh run_standalone_pretrain.sh 0 40 /path/zh-wiki/ /path/Schema.json /path/mindspore"
echo "sh run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR"
echo "for example: sh run_standalone_pretrain.sh 0 40 /path/zh-wiki/ /path/Schema.json"
echo "=============================================================================================================="
DEVICE_ID=$1
EPOCH_SIZE=$2
DATA_DIR=$3
SCHEMA_DIR=$4
MINDSPORE_PATH=$5
export PYTHONPATH=$MINDSPORE_PATH/build/package:$PYTHONPATH
python run_pretrain.py \
--distribute="false" \

View File

@ -135,9 +135,10 @@ class ModelCallback(Callback):
def step_end(self, run_context):
cb_params = run_context.original_args()
self.loss_list.append(cb_params.net_outputs[0])
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0])
self.overflow_list.append(cb_params.net_outputs[1])
self.lossscale_list.append(cb_params.net_outputs[2])
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@ -192,7 +193,11 @@ def test_bert_tdt():
if count == scale_window:
count = 0
assert callback.lossscale_list[i] == callback.lossscale_list[i - 1] * Tensor(2.0, mstype.float32)
# assertion occurs while the loss value is wrong
loss_value = np.array(callback.loss_list)
expect_value = [12.1918125, 11.966035, 11.972114, 11.982671, 11.976399, 12.616986, 12.180658, 12.850562, 12.415608, 12.640145]
print("loss value: {}".format(loss_value))
assert np.allclose(loss_value, expect_value, 0.00001, 0.00001)
if __name__ == '__main__':
test_bert_tdt()

View File

@ -1,190 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train bert network without lossscale"""
import os
import pytest
import numpy as np
import mindspore.context as context
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset.transforms.c_transforms as C
from mindspore import Tensor
from mindspore.train.model import Model
from mindspore.train.callback import Callback
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell
from mindspore.nn.optim import Momentum
from mindspore import log as logger
_current_dir = os.path.dirname(os.path.realpath(__file__))
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
def get_config(version='base', batch_size=1):
"""get config"""
if version == 'base':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=768,
num_hidden_layers=2,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
elif version == 'large':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=1024,
num_hidden_layers=2,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16)
elif version == 'large_mixed':
bert_config = BertConfig(
batch_size=batch_size,
seq_length=128,
vocab_size=21136,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=True,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float32)
else:
bert_config = BertConfig(batch_size=batch_size)
return bert_config
def me_de_train_dataset():
"""test me de train dataset"""
# apply repeat operations
repeat_count = 1
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
# apply batch operations
batch_size = 16
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_count)
return ds
def weight_variable(shape):
"""weight variable"""
np.random.seed(1)
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
return Tensor(ones)
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
self.loss_list = []
def step_end(self, run_context):
cb_params = run_context.original_args()
self.loss_list.append(cb_params.net_outputs.asnumpy()[0])
logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bert_tdt():
"""test bert tdt"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
context.set_context(enable_task_sink=True)
context.set_context(enable_loop_sink=True)
context.set_context(enable_mem_reuse=True)
parallel_callback = ModelCallback()
ds = me_de_train_dataset()
version = os.getenv('VERSION', 'large')
batch_size = int(os.getenv('BATCH_SIZE', '16'))
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = Momentum(netwithloss.trainable_params(), learning_rate=2e-5, momentum=0.9)
netwithgrads = BertTrainOneStepCell(netwithloss, optimizer=optimizer)
netwithgrads.set_train(True)
model = Model(netwithgrads)
params = netwithloss.trainable_params()
for param in params:
value = param.default_input
name = param.name
if isinstance(value, Tensor):
if name.split('.')[-1] in ['weight']:
if name.split('.')[-3] in ['cls2']:
logger.info("***************** BERT param name is 1 {}".format(name))
param.default_input = weight_variable(value.asnumpy().shape)
else:
logger.info("***************** BERT param name is 2 {}".format(name))
tempshape = value.asnumpy().shape
shape = (tempshape[1], tempshape[0])
weight_value = weight_variable(shape).asnumpy()
param.default_input = Tensor(np.transpose(weight_value, [1, 0]))
else:
logger.info("***************** BERT param name is 3 {}".format(name))
param.default_input = weight_variable(value.asnumpy().shape)
model.train(ds.get_repeat_count(), ds, callbacks=parallel_callback, dataset_sink_mode=False)
loss_value = np.array(parallel_callback.loss_list)
expect_out = [12.19179, 11.965041, 11.969687, 11.97815, 11.969171, 12.603289, 12.165594,
12.824818, 12.38842, 12.604046]
logger.info("expected loss value output: {}".format(expect_out))
assert np.allclose(loss_value, expect_out, 0.00001, 0.00001)
if __name__ == '__main__':
test_bert_tdt()