gpu add notequal greaterequal akg kernel

This commit is contained in:
VectorSL 2020-06-11 20:30:33 +08:00
parent c1c683eea8
commit cf2fc1cecf
10 changed files with 317 additions and 2 deletions

View File

@ -35,3 +35,5 @@ from .logical_not import LogicalNot, gpu_schedule_LogicalNot
from .logical_and import LogicalAnd, gpu_schedule_LogicalAnd
from .sub import Sub, gpu_schedule_Sub
from .less_equal import LessEqual, gpu_schedule_LessEqual
from .notequal import NotEqual, gpu_schedule_NotEqual
from .greater_equal import GreaterEqual, gpu_schedule_GreaterEqual

View File

@ -0,0 +1,41 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""greater_equal"""
import _akg.tvm
from _akg.ops.math import greater_equal
from _akg.topi.generic import schedule_elemwise
def GreaterEqual(x, y):
"""GreaterEqual."""
return greater_equal.greater_equal(x, y)
def gpu_schedule_GreaterEqual(outs):
"""
GPU schedule for GreaterEqual.
Args:
outs (tvm.tensor.Tensor): Outputs of compute.
Returns:
sch (schedule.Schedule): The created schedule.
"""
device = 'cuda'
ctx = _akg.tvm.context(device, 0)
if not ctx.exist:
raise SystemError("Skip because %s is not enabled" % device)
with _akg.tvm.target.create(device):
sch = schedule_elemwise(outs)
return sch

View File

@ -0,0 +1,41 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""notequal"""
import _akg.tvm
from _akg.ops.math import notequal
from _akg.topi.generic import schedule_elemwise
def NotEqual(x, y):
"""notequal."""
return notequal.notequal(x, y)
def gpu_schedule_NotEqual(outs):
"""
gpu schedule for NotEqual.
Args:
outs (tvm.tensor.Tensor): outputs of compute.
Returns:
sch (schedule.Schedule): The created schedule.
"""
device = 'cuda'
ctx = _akg.tvm.context(device, 0)
if not ctx.exist:
raise SystemError("Skip because %s is not enabled" % device)
with _akg.tvm.target.create(device):
sch = schedule_elemwise(outs)
return sch

View File

@ -0,0 +1,54 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""operator dsl function: greaterequal"""
import _akg.tvm
import _akg.topi
from _akg.utils.dsl_create import produce_shapes
from _akg.utils import validation_check as vc_util
@vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor)
def greater_equal(input1, input2):
"""
Check whether input1 greaterquals to input2.
Args:
input1 (tvm.tensor.Tensor): Tensor.
input2 (tvm.tensor.Tensor): Tensor.
Returns:
tvm.tensor.Tensor. If input1 greaterquals to input2 return True, else return False.
"""
shape1 = [x.value for x in input1.shape]
shape2 = [x.value for x in input2.shape]
vc_util.check_shape(shape1)
vc_util.check_shape(shape2)
shape1, shape2, shape = produce_shapes(shape1, shape2)
vc_util.elemwise_dtype_check(input1.dtype, input2.dtype)
dtype = input1.dtype
# get greaterquals compute
t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T")
f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F")
input1_bro = _akg.topi.broadcast_to(input1, shape)
input2_bro = _akg.topi.broadcast_to(input2, shape)
c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] >= input2_bro[indice],
t_value[indice], f_value[indice]), name="C")
res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res")
return res

View File

@ -0,0 +1,54 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""operator dsl function: notequal"""
import _akg.tvm
import _akg.topi
from _akg.utils.dsl_create import produce_shapes
from _akg.utils import validation_check as vc_util
@vc_util.check_input_type(_akg.tvm.tensor.Tensor, _akg.tvm.tensor.Tensor)
def notequal(input1, input2):
"""
check whether input1 notequals to input2.
Args:
input1 (tvm.tensor.Tensor): Tensor.
input2 (tvm.tensor.Tensor): Tensor.
Returns:
tvm.tensor.Tensor. If input1 notequal to input2 return True, else return False.
"""
shape1 = [x.value for x in input1.shape]
shape2 = [x.value for x in input2.shape]
vc_util.check_shape(shape1)
vc_util.check_shape(shape2)
shape1, shape2, shape = produce_shapes(shape1, shape2)
vc_util.elemwise_dtype_check(input1.dtype, input2.dtype)
dtype = input1.dtype
# get notequal compute
t_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(1, dtype), "T")
f_value = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.const(0, dtype), "F")
input1_bro = _akg.topi.broadcast_to(input1, shape)
input2_bro = _akg.topi.broadcast_to(input2, shape)
c_out = _akg.tvm.compute(shape, lambda *indice: _akg.tvm.expr.Select(input1_bro[indice] != input2_bro[indice],
t_value[indice], f_value[indice]), name="C")
res = _akg.tvm.compute(shape, lambda *indice: c_out(*indice).astype("bool"), name="res")
return res

View File

@ -32,3 +32,5 @@ from .logical_and import _logical_and_akg
from .logical_not import _logical_not_akg
from .logical_or import _logical_or_akg
from .lessequal import _lessequal_akg
from .notequal import _notequal_akg
from .greater_equal import _greater_equal_akg

View File

@ -0,0 +1,32 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GreaterEqual op"""
from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType
greater_equal_op_info = AkgRegOp("GreaterEqual") \
.fusion_type("OPAQUE") \
.input(0, "x") \
.input(1, "y") \
.output(0, "output") \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \
.get_op_info()
@op_info_register(greater_equal_op_info)
def _greater_equal_akg():
"""GreaterEqual register"""
return

View File

@ -15,7 +15,7 @@
"""LessEqual op"""
from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType
equal_op_info = AkgRegOp("LessEqual") \
lessequal_op_info = AkgRegOp("LessEqual") \
.fusion_type("OPAQUE") \
.input(0, "x") \
.input(1, "y") \
@ -26,7 +26,7 @@ equal_op_info = AkgRegOp("LessEqual") \
.get_op_info()
@op_info_register(equal_op_info)
@op_info_register(lessequal_op_info)
def _lessequal_akg():
"""LessEqual register"""
return

View File

@ -0,0 +1,32 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NotEqual op"""
from mindspore.ops.op_info_register import op_info_register, AkgRegOp, DataType
notequal_op_info = AkgRegOp("NotEqual") \
.fusion_type("OPAQUE") \
.input(0, "x") \
.input(1, "y") \
.output(0, "output") \
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \
.get_op_info()
@op_info_register(notequal_op_info)
def _notequal_akg():
"""NotEqual AutoDiff register"""
return

View File

@ -30,6 +30,21 @@ class NetEqual(Cell):
def construct(self, x, y):
return self.Equal(x, y)
class NetNotEqual(Cell):
def __init__(self):
super(NetNotEqual, self).__init__()
self.NotEqual = P.NotEqual()
def construct(self, x, y):
return self.NotEqual(x, y)
class NetGreaterEqual(Cell):
def __init__(self):
super(NetGreaterEqual, self).__init__()
self.GreaterEqual = P.GreaterEqual()
def construct(self, x, y):
return self.GreaterEqual(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@ -63,3 +78,45 @@ def test_equal():
output1 = equal(x1, y1)
assert np.all(output1.asnumpy() == expect1)
assert output1.shape() == expect1.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_notequal():
x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
expect0 = np.array([[True, True], [False, True]])
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
notequal = NetNotEqual()
output0 = notequal(x0, y0)
assert np.all(output0.asnumpy() == expect0)
assert output0.shape() == expect0.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
notequal = NetNotEqual()
output0 = notequal(x0, y0)
assert np.all(output0.asnumpy() == expect0)
assert output0.shape() == expect0.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_greaterqual():
x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32))
y0 = Tensor(np.array([[1, 2]]).astype(np.float32))
expect0 = np.array([[True, False], [True, False]])
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
gequal = NetGreaterEqual()
output0 = gequal(x0, y0)
assert np.all(output0.asnumpy() == expect0)
assert output0.shape() == expect0.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
gequal = NetGreaterEqual()
output0 = gequal(x0, y0)
assert np.all(output0.asnumpy() == expect0)
assert output0.shape() == expect0.shape